基于金鹰算法优化的lssvm回归预测 - 附代码
摘要:为了提高最小二乘支持向量机(lssvm)的回归预测准确率,对lssvm中的惩罚参数和核惩罚参数利用金鹰算法进行优化。
1.数据集
数据信息如下:
data.mat 的中包含input数据和output数据
其中input数据维度为:2000*2
其中output数据维度为2000*1
所以RF模型的数据输入维度为2;输出维度为1。
2.lssvm模型
lssvm请自行参考相关机器学习书籍。
3.基于金鹰算法优化的LSSVM
金鹰算法原理请参考:https://blog.csdn.net/u011835903/article/details/121209371
金鹰算法的优化参数为惩罚参数和核惩罚参数。适应度函数为LSSVM对训练集和测试集的均方误差(MSE),均方误差MSE越低越好。
f
i
n
t
e
n
e
s
s
=
M
S
E
[
p
r
e
d
i
c
t
(
t
r
a
i
n
)
]
+
M
S
E
[
p
r
e
d
i
c
t
(
t
e
s
t
)
]
finteness = MSE[predict(train)] + MSE[predict(test)]
finteness=MSE[predict(train)]+MSE[predict(test)]
4.测试结果
数据划分信息如下: 训练集数量为1900组,测试集数量为100组
金鹰参数设置如下:
%% 利用金鹰算法选择回归预测分析最佳的SVM参数c&g
%% 金鹰参数设置
% 定义优化参数的个数,在该场景中,优化参数的个数dim为2 。
% 定义优化参数的上下限,如c的范围是[0.01, 1], g的范围是[2^-5, 2^5],那么参数的下限lb=[0.01, 2^-5];参数的上限ub=[1, 2^5]。
%目标函数
fobj = @(x) fun(x,Pn_train,Tn_train,Pn_test,Tn_test);
% 优化参数的个数 (c、g)
dim = 2;
% 优化参数的取值下限
lb = [0.01,0.01];
ub = [5,5];
% 参数设置
pop =20; %金鹰数量
Max_iteration=5;%最大迭代次数
%% 优化(这里主要调用函数)
[Best_pos,Best_score,curve]=SSA(pop,Max_iteration,lb,ub,dim,fobj);
从MSE结果来看,经过改进后的SSA-LSSVM明显优于未改进前的结果。