智能优化算法应用:基于粒子群优化的灰度熵图像多阈值分割
摘要:本文介绍基于灰度熵的图像分割,并且应用粒子群算法进行阈值寻优。
1.前言
阅读此文章前,请阅读《图像分割:直方图区域划分及信息统计介绍》https://blog.csdn.net/u011835903/article/details/108024753 了解基础知识,相关公式含义。
2.灰度熵阈值分割原理
针对最大熵法中仅仅利用像素灰度概率信息的问题,灰度熵的概念被提出 。与最大熵不同的是,灰度熵在考虑概率的基础上,结合了像素的灰度信息,能够使分割后的图像类内灰度更加均匀。一维直方图情况下灰度熵的计算公式为,对应于阈值t的目标类和背景类的熵值分别为:
H
0
(
t
)
=
−
∑
i
=
0
t
h
i
i
β
0
(
t
)
l
n
i
β
0
(
t
)
(1)
H_0(t) = -\sum_{i=0}^th_i\frac{i}{\beta_0(t)}ln \frac{i}{\beta_0(t)} \tag{1}
H0(t)=−i=0∑thiβ0(t)ilnβ0(t)i(1)
H b ( t ) = − ∑ i = t + 1 L − 1 h i i β b ( t ) l n i β b ( t ) (2) H_b(t)=-\sum_{i=t+1}^{L-1}h_i\frac{i}{\beta_b(t)}ln \frac{i}{\beta_b(t)}\tag{2} Hb(t)=−i=t+1∑L−1hiβb(t)ilnβb(t)i(2)
E ( t ) = H 0 ( t ) + H b ( t ) (3) E(t)=H_0(t) + H_b(t) \tag{3} E(t)=H0(t)+Hb(t)(3)
其中:
β
0
(
t
)
=
∑
i
=
0
t
i
h
i
(4)
\beta_0(t) = \sum_{i=0}^{t}ih_i \tag{4}
β0(t)=i=0∑tihi(4)
β b ( t ) = ∑ i = t + 1 L − 1 i h i (5) \beta_b(t) = \sum_{i=t+1}^{L-1}ih_i \tag{5} βb(t)=i=t+1∑L−1ihi(5)
最佳阈值:
t
∗
=
a
r
g
m
a
x
(
0
≤
t
≤
L
−
1
)
{
E
(
t
)
}
(6)
t^* = argmax_(0\leq t \leq L-1)\{E(t)\} \tag{6}
t∗=argmax(0≤t≤L−1){E(t)}(6)
推广到多阈值则为,寻找一组阈值
(
t
0
,
.
.
.
,
t
n
)
(t_0,...,t_n)
(t0,...,tn)使得熵值最大
t
(
1
,
.
.
,
n
)
∗
=
a
r
g
m
a
x
{
H
0
+
H
1
+
,
.
.
.
+
H
n
}
(7)
t(1,..,n)^*=argmax\{H_0+H_1+,...+H_n\}\tag{7}
t(1,..,n)∗=argmax{H0+H1+,...+Hn}(7)
3.基于粒子群优化的多阈值分割
由上述灰度熵阈值分割法的原理可知,要得到最终的阈值,需要去寻找阈值,熵值最大。于是可以利用智能优化算法进行阈值的寻优,使得获得最佳阈值。
于是优化的适应度函数就是:
t
(
1
,
.
.
,
n
)
∗
=
a
r
g
m
a
x
{
H
0
+
H
1
+
,
.
.
.
+
H
n
}
(8)
t(1,..,n)^*=argmax\{H_0+H_1+,...+H_n\}\tag{8}
t(1,..,n)∗=argmax{H0+H1+,...+Hn}(8)
设置阈值分割的个数,寻优边界为0到255(因为图像的像素值范围为0-255),设置相应的粒子群算法参数
粒子群算法原理请参考:网络博客
4.算法结果:
5.参考文献:
[1]吴一全,孟天亮,吴诗婳.图像阈值分割方法研究进展20年(1994—2014)[J].数据采集与处理,2015,30(01):1-23.