2D&3D Pose数据集

2D数据集

你好! 这是你第一次使用 Markdown编辑器 所展示的欢迎页。如果你想学习如何使用Markdown编辑器, 可以仔细阅读这篇文章,了解一下Markdown的基本语法知识。

COCO

AIC

MPII

CrowdPose

OCHuman

3D数据集

Human36M

human36M的原始2d关键点为17个,如下图所示,一般训练时还会人为加一些点位,比如Thorax等, Thorax是通过左右肩补出来的。
Human36M

num_joints = 18
joints_name = ('Pelvis', 'R_Hip', 'R_Knee', 'R_Ankle', 'L_Hip', 'L_Knee', 'L_Ankle', 'Torso', 'Neck', 'Nose', 'Head', 'L_Shoulder', 'L_Elbow', 'L_Wrist', 'R_Shoulder', 'R_Elbow', 'R_Wrist', 'Thorax') # manually added 'Thorax
skeleton = [[0, 7], [7, 8], [8, 9], [9, 10], [8, 11], [11, 12], [12, 13], [8, 14], [14, 15], [15, 16], [0, 1], [1, 2], [2, 3], [0, 4], [4, 5], [5, 6]]
flip_pairs = [[1, 4], [2, 5], [3, 6], [14, 11], [15, 12], [, 16, 13]]
action_name = ['Directions', 'Discussion', 'Eating', 'Greeting', 'Phoning', 'Posing', 'Purchases', 'Sitting', 'SittingDown', 'Smoking', 'Photo', 'Waiting', 'Walking', 'WalkDog', 'WalkTogether']
root_idx = joints_name.index('Pelvis')
if data_split == 'train':
	if protocol == 1:
		subject = [1, 5, 6, 7, 8, 9]
	elif protocol == 2:
		subject = [1, 5, 6, 7, 8]
elif data_split == 'test':
	if protocol == 1:
		subject = [11]
	elif protocol == 2:
		subject = [9, 11]

MuCo-3DHP

MuPoTS-3D

5w多帧,20个真实世界场景,每个场景都有三个目标。

### 3D Pose Estimation Frameworks for Classifying 2D Datasets 对于基于2D数据集3D姿态估计框架,通常涉及多模态学习、几何推理以及跨域映射技术。以下是几个可能适用的技术方向及其相关内容: #### 密度聚类方法在点云中的应用 密度聚类是一种有效的无监督学习方法,在处理三维点云数据时尤为突出。通过利用局部特征和全局结构信息,该方法能够有效提取物体的关键属性并完成分类任务[^1]。 #### 跨图像集合的联合深度图匹配与几何学习 这种方法结合了异构二维图像集合的信息,通过构建多个图形之间的对应关系来实现更精确的姿态估计。它不仅考虑了单张图片内的空间分布特性,还引入了不同视角下的关联约束条件,从而提高了模型泛化能力[^2]。 #### 基于CAD模型的密集重建算法 此研究探讨如何借助预先定义好的计算机辅助设计(CAD)模板来进行单一视图下对象形状恢复工作。具体而言,就是找到最接近实际观测结果的那个预设原型实例作为最终输出选项之一[^3]。 #### 对比学习驱动的机器学习范式转变 一种新兴趋势是从传统依赖大量标注样本转向更加注重相对顺序判断的新模式。在这种机制里,系统会自动评估当前待测项目与其他已知案例之间相似程度高低,并据此推断其类别归属情况[^4]。 综上所述,针对特定应用场景需求可以选择合适的方法论组合起来形成完整的解决方案路径;同时也要注意考虑到计算资源消耗水平等因素影响整体性能表现。 ```python import numpy as np from sklearn.cluster import DBSCAN def density_based_clustering(point_cloud_data): db = DBSCAN(eps=0.5, min_samples=10).fit(point_cloud_data) labels = db.labels_ return labels point_cloud_example = np.random.rand(100, 3) # Example point cloud data labels_result = density_based_clustering(point_cloud_example) print(labels_result) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值