目录
一、YOLOv12 横空出世
在计算机视觉领域,目标检测一直是研究的重点与热点,而 YOLO(You Only Look Once)系列模型无疑是其中的璀璨明星。自 2015 年 YOLOv1 诞生以来,YOLO 系列便凭借其独特的单阶段检测架构和端到端的设计理念,在实时目标检测任务中崭露头角,以快速的推理速度和较高的检测精度,广泛应用于自动驾驶、安防监控、工业检测等众多领域,深受研究者和开发者的青睐 ,在 GitHub 上收获了极高的关注度,其代码被大量的项目所借鉴和使用。
在过去的几年中,YOLO 系列不断推陈出新,从 YOLOv2 到 YOLOv11,每一个版本都在性能、精度或速度上取得了显著的提升,持续引领着目标检测技术的发展潮流。就在大家对 YOLO 系列的下一次突破满怀期待之时,YOLOv12低调发布,瞬间在计算机视觉领域掀起了一阵热议浪潮,吸引了全球无数目光聚焦于此。它的出现,犹如一颗重磅炸弹,打破了人们对现有目标检测技术的认知局限,为该领域带来了全新的变革与希望。
二、YOLOv12 的性能飞跃
2.1 多规模优势
YOLOv12 为了满足不同场景下的多样化需求,精心打造了 5 种不同规模的模型,分别是 YOLOv12-N、S、M、L 和 X 。这种多规模的设计策略,犹如为开发者提供了一套功能强大且灵活多变的 “工具箱”,使得他们能够根据具体任务的复杂程度、硬件资源的限制以及对检测精度和速度的不同要求,精准地挑选出最适配的模