diffusers中DDPMScheduler/AutoencoderKL/UNet2DConditionModel/CLIPTextModel代码详解

本文详细解析了diffusers库中涉及的DDPMScheduler、AutoencoderKL和UNet2DConditionModel的代码实现,以及CLIPTextModel在扩散模型训练中的应用。通过分析关键文件如`autoencoder_kl.py`、`scheduling_ddpm.py`和`unet_2d_condition.py`,揭示了扩散模型训练的基本步骤,包括使用MSE损失进行噪声预测。同时,简要介绍了推理过程,重点提及`pipeline_stable_diffusion.py`和`scheduling_ddpm.py`。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

扩散模型的训练时比较简单的

上图可见,unet是epsθ是unet。noise和预测出来的noise做个mse loss。

训练的常规过程:

latents = vae.encode(batch["pixel_values"].to(weight_dtype)).latent_dist_sample()
latents = latents*vae.config.scaling_factor
noise = torch.randn_like(latents)
timesteps = torch.randint(0, noise_scheduler.config.num_train_timesteps, (bsz,), device=latents.device)
            
noisy_latents = noise_scheduler.add_noise(latents, noise, timesteps)
encoder_hidden_states = text_encoder(batch["input_ids"])[0]
 
target = noise
model_pred = unet(noisy_latents, timesteps, encode
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值