[PPT] 主流大语言模型的技术细节

本文深入探讨主流大语言模型如LLaMA、ChatGLM、Falcon的技术细节,涵盖tokenizer、位置编码、Layer Normalization和激活函数等方面。同时,文章讨论了分布式训练技术,包括数据并行、张量模型并行等,并提到了参数高效微调技术如prompt tuning和LoRA。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

主流大语言模型的技术原理细节从预训练到微调icon-default.png?t=N7T8https://mp.weixin.qq.com/s/P1enjLqH-UWNy7uaIviWRA

比较 LLaMA、ChatGLM、Falcon 等大语言模型的细节:tokenizer、位置编码、Layer Normalization、激活函数等。2. 大语言模型的分布式训练技术:数据并行、张量模型并行、流水线并行、3D 并行、零冗余优化器 ZeRO、CPU 卸载技术 ZeRo-offload、混合精度训练、激活重计算技术、Flash Attention、Paged Attention。3. 大语言模型的参数高效微调技术:prompt tuning、prefix tuning、adapter、LLaMA-adapter、 LoRA。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值