基于分子图的深度学习在化学和药物领域非常热门。
2019年8月13日JMC(Journal of Medicinal Chemistry)刊登了一篇文章“Pushing the Boundaries of Molecular Representation for Drug Discovery with the Graph Attention Mechanism”,介绍了一种基于注意力机制的图神经网络模型(Attentive FP)。该模型可以用于分子表征,在多个药物发现相关的数据集上的预测表现达到当前最优,并且该模型所学到的内容具有可解释性。
本文介绍了基于DGL和RDKit实现的Attentive FP模型,用于分子性质预测。该模型利用图注意力机制,在药物发现相关任务上表现出高预测性能。通过训练和验证,Attentive FP模型相较于基于分子指纹的RandomForest展示出更好的溶解度预测效果。
订阅专栏 解锁全文
5298

被折叠的 条评论
为什么被折叠?



