DGL & RDKit | 基于Attentive FP的分子性质线性模型

本文介绍了基于DGL和RDKit实现的Attentive FP模型,用于分子性质预测。该模型利用图注意力机制,在药物发现相关任务上表现出高预测性能。通过训练和验证,Attentive FP模型相较于基于分子指纹的RandomForest展示出更好的溶解度预测效果。

基于分子图的深度学习在化学和药物领域非常热门。

2019年8月13日JMC(Journal of Medicinal Chemistry)刊登了一篇文章“Pushing the Boundaries of Molecular Representation for Drug Discovery with the Graph Attention Mechanism”,介绍了一种基于注意力机制的图神经网络模型(Attentive FP)。该模型可以用于分子表征,在多个药物发现相关的数据集上的预测表现达到当前最优,并且该模型所学到的内容具有可解释性。

Attentive FP
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

DrugOne

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值