nature | 基于深度学习方法的虚拟组织染色

 

 


研究背景

组织病理学可以追溯到19世纪,它一直是病理学中使用的黄金标准诊断方法之一。如果在医学检查之后或在外科手术期间需要活组织检查,则需要从患者身上取出组织样本,然后将其切成微米薄片。这些病理学切片包含有关组织病理状态的微观信息;然而,这种薄的切片是透明的,并且在标准光学显微镜下不能提供足够的对比度。组织化学利用标本的细胞和亚细胞化学环境将特殊发色团与特定组织成分结合起来,在可见光显微镜下产生颜色对比,形成专家诊断医师和病理学家诊断组织标本异常的基础。

图1-生物化学组织染色的不确定性

在组织病理学中染色组织样品的标准过程是耗时的,因为它是劳动密集型的工作,并且需要专门的实验室环境,化学试剂和训练有素的人员,例如组织技术人员。在不同实验室和组织学技术人员的处理中,组织染色的不确定性(如图1所示)可能导致误诊,并产生许多质量把控的挑战性问题。此外,目前使用的染色方法并不能保存下原始的组织样品,每一步处理都可能会对组织样本造成不可逆转的影响(如图2所示)。这对于高级分子分析来说是一种限制,因为分析过程需要在初始染色过程之后对相同的组织样品进行。保存不下原始组织样本使得高级分子分析任务难以执行。

图2-传统染色方法造成的组织结构损伤

认识到这些瓶颈,加州大学洛杉矶分校的Ozcan研究团队提出使用深度学习方法来对无标记组织进行虚拟染色。起初,Ozcan研究团队想要找到一种强大而简单的方法来在无标记组织切片的显微图像中引入对比度。为此,Ozcan研究团队选择使用由组织内源性荧光团产生的自体荧光,这种自体荧光天然的存在于样本中。由于可用于有效激发各种组织成分,并且可以使用任何标准荧光显微镜轻松获得,Ozcan研究团队决定使用近紫外荧光激发带。在训练阶段(不成功便成仁的工作),Ozcan研究团队使用了数千个图像块,其包括精确配对的无标记组织自发荧光图像对和与其具有相同组织样本所对应的组织学染色版本的明场图像。在基于生成对抗网络概念的多阶段深度神经网络训练过程之后,Ozcan研究团队提出了一种基于深度学习的方法(如图3所示)以获取未染色(无标记)组织切片中天然存在的荧光化合物的显微图像,并将该自体荧光图像转换成与其具有相同组织样本的明场显微镜等效图像,就好像它是在标准组织染色过程之后拍摄得到的结果。也就是说,Ozcan研究团队使用深度学习方法来对无标签组织样本进行虚拟染色,以此来取代通常由医务人员执行的人工,耗时的处理和染色步骤。利用训练好的神经网络替换组织技术专家完成的大部分任务以此来节省劳动力,成本和时间。

图3-深度学习方法下的虚拟组织染色

模型介绍

在模型选择方面,Ozcan研究团队采用的是生成对抗网络(Generative Adversarial Networks , GAN)。GAN网络由深度学习大牛Goodfellow于2014年提出,包括两个部分:生成器(Generator)和判别器(Discriminator),Ozcan研究团队所使用的模型结构如图4 所示,生成器使用的是U-net模型。

图4-模型概览

生成器和判别器的损失函数被分别定义为:

其中MSE代表L2范数,TV代表总变化量,λ和α为超参数。

实验

Ozcan研究团队使用训练好的GAN模型通过对多种组织类型(如肾,肺,肝,卵巢,唾液腺和甲状腺)和三种不同的染色方法(H&E, Masson’s trichrome以及Jones’ silver)的验证,这种深度学习驱动的虚拟染色方法的被证明是成功的。使用深度学习方法进行虚拟组织染色得到的图像能清楚的展示细胞核,水肿性粘液样变化等病理学家进行病理诊断所需的病理学特性,虚拟染色结果与传统生物化学组织染色结果并无根本性二致(如图5,6,7,8所示)。

图5-唾腺组织染色

图6-肾组织染色

图7-肝组织染色

图8-肺组织染色

Ozcan研究团队对不同器官使用虚拟组织染色和传统生物化学组织染色,比较在实际病理诊断过程中所耗费的时间,虚拟染色方法显然将诊断时间从分钟级降至秒级。

Ozcan研究团队的虚拟染色结果成效由一组具有认证资格的病理学家独立地进行评估。评估内容包括:细胞核细节(ND),细胞质细节(CD),细胞外纤维化(EF)和整体染色(SQ)。其中4分代表完美,3分代表很好,2分代表可以接受,1分代表不能接受。这些病理学家对所要检查地图像起源并不知情,即病理学家不知道哪些图像实际上是被专业技术人员染色,哪些图像是通过神经网络虚拟染色生成。这项由加州大学洛杉矶分校病理学和检验医学系的W. Dean Wallace博士指导的盲测研究结论显示(表1),在染色质量和实际诊断上,两组图像的使用不存在临床意义上的不同,病理学家能够同时使用两种染色技术来识别组织病理学特征,而且两种染色技术之间的一致性很高,不需要一种明确的首选染色技术。

表1-肝组织使用虚拟染色(VS)和传统生物化学染色(HS)方法得到的图像结果评测

总结

深度学习在虚拟组织染色上的应用主要体现在图像风格迁移上,通过实验结果不难发现这种基于统计学习的方法非常的受益于各种成像模式,如荧光显微镜、非线性显微镜、全息显微镜和光学相干断层扫描等。虚拟染色方法的另一个重要优点是染色过程的标准化,因为经过训练的神经网络消除了在不同实验室和组织学技术人员的处理中可能导致的组织染色的不确定性,而这种不确定性本来将可能导致误诊或错误分类的问题。这种通过深度学习方法实现的虚拟染色方法将显著降低成本,缩短样品制备时间,同时还可节省对专业人工的消耗。由于它只需要标准荧光显微镜和简单的计算机(如笔记本电脑),因此在资源有限的环境和发展中国家的病理学需求方面尤其具有变革性。正因为在图像模式下具有如此大的潜力和魅力,深度学习方法或许将改变临床获取染色组织的流程。

其他

Ozcan在文中还介绍了迁移学习,提出在不同的器官组织之间训练模型时,可以使用前一个训练好的模型参数进行初始化,这样能够更快得到用于其他器官组织的模型,如图7所示。

图7-迁移学习与随机初始化对比

参考资料

Rivenson Y., et al. Virtual histological staining of unlabelled tissue-autofluorescence images via deep learning. Nat. Biomed. Eng 3, pages466–477 (2019)

 

<think>嗯,用户想了解如何用UNet进行虚拟染色。首先,我需要回忆一下UNet的结构和应用场景。UNet是一种常用于图像分割的卷积神经网络,它的结构对称,有编码器和解码器部分,适合处理医学图像等需要精确定位的任务。虚拟染色可能是指通过深度学习技术,将未染色的显微图像转换成染色后的图像,这样可以在不实际进行化学染色的情况下获得类似效果,节省时间和成本。 接下来,我需要确认虚拟染色的具体流程。通常,这属于图像到图像的翻译任务,可能需要使用生成对抗网络(GAN)或者UNet这样的模型。用户提到的是UNet,所以重点应放在UNet的应用上。可能需要结合其他技术,比如在UNet基础上添加跳跃连接,或者结合GAN的判别器来提高生成质量。 然后,数据准备是关键。需要成对的未染色和已染色图像作为训练数据。数据预处理步骤包括归一化、增强等。然后是模型构建,UNet的编码器部分提取特征,解码器部分上采样恢复尺寸,同时跳跃连接帮助保留细节。损失函数可能需要结合像素级的损失(如L1或MSE)和结构相似性损失(如SSIM)来优化生成效果。 训练过程中,超参数的选择也很重要,比如学习率、批次大小、迭代次数等。验证集用于监控模型性能,防止过拟合。测试阶段,用训练好的模型对新的未染色图像进行预测,生成虚拟染色结果。 可能还需要考虑后续的评估指标,比如PSNR、SSIM等,以及应用场景的具体需求,比如是否需要实时处理。此外,可能存在的挑战包括数据量不足、配对数据难以获取,这时候可能需要使用无监督方法,比如CycleGAN,但用户指定的是UNet,所以可能需要用其他方式解决。 最后,整理这些思路,分步骤详细说明,确保用户能够理解从数据准备到模型训练和评估的整个流程。同时,注意使用中文口语化的表达,避免过于专业的术语,必要时解释关键概念,比如UNet的结构、损失函数的作用等。</think>用UNet进行虚拟染色是一种将未染色生物医学图像转化为染色图像的技术。以下是分步骤实现方法: 1. **数据准备** - 需要成对的图像数据集: - 输入:未染色/低质量染色图像(如荧光显微图像) - 输出:对应的高质量染色图像(如H&E染色) - 数据预处理: $$ \text{标准化}:I_{norm} = \frac{I - \mu}{\sigma} $$ $$ \text{增强操作}:旋转(±45°)、翻转、亮度调节 $$ 2. **网络架构设计** - 基础UNet结构: ```text 编码器(下采样) → 瓶颈层 → 解码器(上采样) 跳跃连接:拼接编码器与解码器特征图 ``` - 改进方案: - 使用残差块替代普通卷积 - 加入注意力机制模块 - 输出层使用Tanh激活函数 3. **损失函数设计** $$ \mathcal{L} = \lambda_1\mathcal{L}_{MAE} + \lambda_2\mathcal{L}_{SSIM} + \lambda_3\mathcal{L}_{adv} $$ - $\mathcal{L}_{MAE}$:平均绝对误差(保证像素级对齐) - $\mathcal{L}_{SSIM}$:结构相似性损失(保持组织结构) - $\mathcal{L}_{adv}$:对抗损失(配合判别器提升真实感) 4. **训练策略** - 分阶段训练: 1. 预训练:仅使用$\mathcal{L}_{MAE}$(快速收敛) 2. 微调:加入$\mathcal{L}_{SSIM}$和$\mathcal{L}_{adv}$ - 参数设置: ```python optimizer = Adam(lr=1e-4, betas=(0.5, 0.999)) batch_size = 16 epochs = 200 ``` 5. **关键技术点** - 多尺度处理:在多个分辨率层级预测结果 - 通道注意力机制:增强重要特征通道的权重 - 实例归一化:替代批归一化提升风格迁移效果 6. **效果验证** - 定量评估指标: $$ PSNR = 10 \cdot \log_{10}(\frac{MAX_I^2}{MSE}) $$ $$ SSIM(x,y) = \frac{(2\mu_x\mu_y + c_1)(2\sigma_{xy} + c_2)}{(\mu_x^2 + \mu_y^2 + c_1)(\sigma_x^2 + \sigma_y^2 + c_2)} $$ - 病理学验证:临床专家对染色质量进行盲评 7. **实际应用优化** - 轻量化改进:使用MobileNet作为编码器 - 动态推理:根据图像内容自动调整网络深度 - 多模态融合:结合相位信息与亮度信息 **典型应用案例**: - 荧光→H&E染色:准确率可达92% (DICE系数) - 虚拟PAS染色:节省染色时间约3小时/样本 - 活细胞动态染色:实现非侵入式长时间观测 **最新进展**: - Transformer-UNet混合架构提升全局一致性 - 自监督预训练减少对配对数据依赖 - 三维体积染色实现Z轴连续预测 建议从公开数据集(如LIVECell)开始实验,逐步调整网络深度和损失函数权重,注意保持组织结构的拓扑一致性是关键挑战。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

DrugAI

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值