算法(algorithm)
yingfeng2
这个作者很懒,什么都没留下…
展开
-
背包问题再理解
菜鸟都能理解的0-1背包问题的空间优化如果你不知道什么叫做0-1背包问题,下面是0-1背包问题的简单描述假设有n件物品每件物品的体积为w1, w2……wn 相对应的价值为 v1, v2.……vn。01背包是在n件物品取出若干件放在空间为total_weight的背包里,使得背包的总体积最大关于0-1背包问题没有优化版本,请看{原创 2014-12-22 19:03:46 · 697 阅读 · 0 评论 -
动态规划法——求解0-1背包问题
动态规划法——求解0-1背包问题 问题描述0-1背包问题与背包问题(贪心法——背包问题)最大的不同就是背包问题的子问题彼此之间没有联系,所以只要找出解决方法,然后用贪心算法,取得局部最优解就ok了,但是0-1背包问题更复杂,因为物品不可再分,导致了子问题之间是有联系的。问题分析转载 2014-12-22 19:00:06 · 1013 阅读 · 0 评论 -
完全背包问题
P02: 完全背包问题题目有N种物品和一个容量为V的背包,每种物品都有无限件可用。第i种物品的费用是c[i],价值是w[i]。求解将哪些物品装入背包可使这些物品的费用总和不超过背包容量,且价值总和最大。基本思路这个问题非常类似于01背包问题,所 不同的是每种物品有无限件。也就是从每种物品的角度考虑,与它相关的策略已并非取或不取两种,而是有取0件、取1件、取2件……等很多种。如果仍然转载 2014-12-22 13:54:33 · 463 阅读 · 0 评论 -
背包01
题目有N件物品和一个容量为V的背包。第i件物品的费用是c[i],价值是w[i]。求解将哪些物品装入背包可使价值总和最大。基本思路这是最基础的背包问题,特点是:每种物品仅有一件,可以选择放或不放。用子问题定义状态:即f[i][v]表示前i件物品恰放入一个容量为v的背包可以获得的最大价值。则其状态转移方程便是:f[i][v]=max{f[i-1][v],f[i-1][v原创 2014-12-20 15:53:30 · 451 阅读 · 0 评论 -
深入探索透视投影变换
深入探索透视投影变换深入探索透视投影变换最近更新:2013年11月22日-Twinsen编写-本人水平有限,疏忽错误在所难免,还请各位数学高手、编程高手不吝赐教-email: popyy@netease.com 透视投影是3D固定流水线的重要组成部分,是将相机空间中的点从视锥体(frustum)变换到规转载 2015-09-21 22:24:00 · 420 阅读 · 0 评论