deeplabcut 安装、demo实验到应用

最近发现一个很NB的玩意,deeplabcut,实现自动捕捉动物运动的软件,尝试使用在自己的项目中,所以进行一波操作。

先给一些链接 实验室链接

github链接

路人one链接  路人two链接

本人环境 Ubuntu 16.04,根据自己电脑显卡分别安装对应版本的NVIDIA,CUDA 9,Anaconda3-4.2.0,Python3.5。请先自行安装好

1、首先到 https://repo.anaconda.com/archive 下载对于你Python版本的Anaconda,并安装。

2、环境创建命令:

# 在上述环境安装完成的情况下进行:
conda create -n deeplabcut-py36 python=3.6
# 激活环境,之后的操作都是在激活 deeplabcut-py36环境的情况下进行操作
source activate deeplabcut-py36
# 笔者安装gpu版本,deeplabcut 现阶段只支持 tensorflow 1.8 版本
conda install tensorflow-gpu
# 安装deeplabcut
pip install deeplabcut
# 安装wxpython-这是一个Python的GUI库
#linux用户 Ubuntu 16.04LTS
pip install https://extras.wxpython.org/wxPython4/extras/linux/gtk3/ubuntu-16.04/wxPython-4.0.3-cp36-cp36m-linux_x86_64.whl
/

3、环境检测:

# 在激活 deeplabcut-py36 环境下
# 进入 python 交互环境
:~$ python
>>>import tensorflow as tf
>>>sess = tf.Session(config=tf.ConfigProto(log_device_placement=True))
# 如果能够正确显示出GPU信息说明成功
 
>>>import deeplabcut
# 无报错则说明成功

4、其他相关命令:

conda info --envs            #列出系统中现有的环境
conda remove –n 环境名 –all   #移除环境
source activate 环境名        #激活环境
source deactivate             # 退出环境
conda create -n deeplabcut-py36 python=3.6   #创建环境
 ######################################################

使用

导入相关库:

import deeplabcut
import tensorflow as tf
import os
from pathlib import Path

加载数据:

# 路径
path_config_file = os.path.join(os.getcwd(),'DeepLabCut-Felix/examples/Reaching-Mackenzie-2018-08-30/config.yaml')
# 加载数据
deeplabcut.load_demo_data(path_config_file)
# 注意文件夹的 文件变化
# 检查标签数据
deeplabcut.check_labels(path_config_file)
 

训练数据:deeplabcut.train_network(path_config_file, shuffle=1, saveiters=300, displayiters=10)
可以实时监控显卡运行情况:watch -n 10 nvidia-smi
#        ^数字10代表每隔10s刷新一次数据

评估网络:# ctrl + c 停止训练
# 开始评估模型
deeplabcut.evaluate_network(path_config_file,plotting=True)
# 此函数用于评估特定训练状态(快照)或所有状态下特定随机播放/随机播放的训练模型。
# 在数据集(图像)上对网络进行评估,并将结果作为.csv文件存储在评估结果下的子目录中。

分析视频:

# 创建路径
videofile_path = ['/home/DeepLabCut-Felix/examples/Reaching-Mackenzie-2018-08-30/videos/MovieS2_Perturbation_noLaser_compressed.avi']
# 注意保存视频的目录下有两个视频,但不是同一个视频。
# 一个用于训练,一个(MovieS2_Perturbation_noLaser_compressed.avi)用于分析
# 分析视频
print("Start Analyzing the video!")
deeplabcut.analyze_videos(path_config_file, videofile_path )
# 需要较长的时间分析
 

后续。。。。等待二。。
 

以下是在Windows环境下安装DeepLabCut的步骤: 1. 安装Anaconda(如果您已经安装了,请跳过此步骤)。在Anaconda官网(https://www.anaconda.com/products/individual)上下载适用于您的操作系统的版本,安装后打开Anaconda Navigator。 2. 创建一个新的Python环境。在Anaconda Navigator中,单击“Environments”选项卡,然后单击“Create”按钮。输入环境名称并选择要使用的Python版本,然后单击“Create”按钮。 3. 打开Anaconda Prompt。在Windows搜索栏中输入“Anaconda Prompt”并打开。 4. 在Anaconda Prompt中,安装Git。输入以下命令并按Enter键:`conda install git` 5. 克隆DeepLabCut仓库。输入以下命令并按Enter键:`git clone https://github.com/DeepLabCut/DeepLabCut.git` 6. 进入DeepLabCut文件夹。输入以下命令并按Enter键:`cd DeepLabCut` 7. 安装DeepLabCut。输入以下命令并按Enter键:`pip install -e .` 8. 安装其他依赖项。输入以下命令并按Enter键:`pip install tensorflow==1.14.0 scikit-image pillow pandas opencv-python-headless` 9. 在Jupyter Notebook中测试DeepLabCut。在Anaconda Prompt中输入以下命令并按Enter键:`jupyter notebook`。在Jupyter Notebook中,打开“examples”文件夹,在其中选择一个示例文件并运行它。 这些步骤应该可以帮助您在Windows环境下安装DeepLabCut。如果您遇到任何问题,请查看DeepLabCut文档(https://deeplabcut.github.io/DeepLabCut/docs/InstallationWindows.html)或在DeepLabCut论坛中寻求帮助(https://forum.image.sc/tag/deeplabcut)。
评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值