🎯 当下,企业在做垂直应用方案落地时,会在 “RAG+通用大模型” 以及“RAG+微调大模型” 上难以抉择。有人认为,基于“通用”大模型的RAG 知识库方案就能实现业务场景。而有时会发现,仍然无法满足预期要求,而到底什么时候才应该选择微调,而不是优化我的 RAG 方案?这个界限如何找?
“通用”大模型:指的没有做过微调的大模型,比如大家熟知的 gpt-4、Qwen、Baichuan、Llama 等等。
的确,这个界限很难找,因为你也不知道,是目前你的 RAG 方案本身问题,还是说应该微调的问题。本文将针对这个困惑给予一些建议,希望对你有帮助。
以智能客服场景为例,我们列举如下几个需要进行微调的关键因素:
什么时候需要结合微调进一步增强 RAG 能力?
总的来说,当智能客服需要处理的是非常通用、非特定领域的任务,并且不需要深入理解上下文或个性化服务时,RAG加上通用大模型可能就足够了。然而,一旦涉及到特定领域知识、上下文理解、个性化服务、文化差异、法规合规性或者需要持续学习和适应,微调模型就变得非常必要,以确保智能客服能够提供高质量的服务并满足用户的期望。
往期推荐
— 完 —
点这里👇关注我,记得标星哦~