【RAG+通用大模型】 or 【RAG+微调大模型】?企业知识库落地方案如何抉择?

🎯 当下,企业在做垂直应用方案落地时,会在 “RAG+通用大模型” 以及“RAG+微调大模型” 上难以抉择。有人认为,基于“通用”大模型的RAG 知识库方案就能实现业务场景。而有时会发现,仍然无法满足预期要求,而到底什么时候才应该选择微调,而不是优化我的 RAG 方案?这个界限如何找?

“通用”大模型:指的没有做过微调的大模型,比如大家熟知的 gpt-4、Qwen、Baichuan、Llama 等等。

的确,这个界限很难找,因为你也不知道,是目前你的 RAG 方案本身问题,还是说应该微调的问题。本文将针对这个困惑给予一些建议,希望对你有帮助。

以智能客服场景为例,我们列举如下几个需要进行微调的关键因素:

什么时候需要结合微调进一步增强 RAG 能力?

总的来说,当智能客服需要处理的是非常通用、非特定领域的任务,并且不需要深入理解上下文或个性化服务时,RAG加上通用大模型可能就足够了。然而,一旦涉及到特定领域知识、上下文理解、个性化服务、文化差异、法规合规性或者需要持续学习和适应,微调模型就变得非常必要,以确保智能客服能够提供高质量的服务并满足用户的期望。

往期推荐

—  —

点这里👇关注我,记得标星哦~

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AGI舰长

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值