全局平均池化(Global Average Pooling)

CNN 专栏收录该内容
1 篇文章 0 订阅

出处:Lin M, Chen Q, Yan S. Network in network[J]. arXiv preprint arXiv:1312.4400, 2013.

定义:将特征图所有像素值相加求平局,得到一个数值,即用该数值表示对应特征图。

目的:替代全连接层

效果:减少参数数量,减少计算量,减少过拟合

 思路:如下图所示。假设最终分成10类,则最后卷积层应该包含10个滤波器(即输出10个特征图),然后按照全局池化平均定义,分别对每个特征图,累加所有像素值并求平均,最后得到10个数值,将这10个数值输入到softmax层中,得到10个概率值,即这张图片属于每个类别的概率值。

意义:对整个网络从结构上做正则化防止过拟合,剔除了全连接层黑箱子操作的特征,直接赋予了每个channel实际的类别意义。

参考

https://blog.csdn.net/yimingsilence/article/details/79227668

https://blog.csdn.net/qq_23304241/article/details/80292859

评论 4 您还未登录,请先 登录 后发表或查看评论
©️2022 CSDN 皮肤主题:大白 设计师:CSDN官方博客 返回首页

打赏作者

五岳凌峰

你的鼓励将是我创作的最大动力

¥2 ¥4 ¥6 ¥10 ¥20
输入1-500的整数
余额支付 (余额:-- )
扫码支付
扫码支付:¥2
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值