Global Average Pooling全局平均池化的一点理解

本文介绍了深度学习中全局平均池化(Global Average Pooling, GAP)的概念及其与传统池化方法的区别。通过对比全连接层,揭示了GAP在减少参数量、提高训练效率和防止过拟合方面的优势。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

 

Traditional Pooling Methods

要想真正的理解Global Average Pooling,首先要了解深度网络中常见的pooling方式,以及全连接层。

众所周知CNN网络中常见结构是:卷积、池化和激活。卷积层是CNN网络的核心,激活函数帮助网络获得非线性特征,而池化的作用则体现在降采样:保留显著特征、降低特征维度,增大kernel的感受野。深度网络越往后面越能捕捉到物体的语义信息,这种语义信息是建立在较大的感受野基础上。已古人的例子来做解释,想必大家都知道盲人摸象这个成语的来历,每个盲人只能触摸到大象的一部分,也就是只能获得local response,基于这些local response,盲人们很难猜对他们到底在摸什么。即使是一个明眼人,眼睛紧贴这大象后背看,也很难猜到看的是什么。这个例子告诉我们局部信息很难提供更高层的语义信息,因此对feature map降维,进而增大后面各层kernel的感受野是一件很重要的事情。另外一点值得注意:pooling也可以提供一些旋转不变性。


Fully Connected layer

很长一段时间以来,全连接网络一直是CNN分类网络的标配结构。一般在全连接后会有激活函数来做分类,假设这个激活函数是一个多分类softmax,那么全连接网络的作用就是将最后一层卷积得到的feature map stretch成向量,对这个向量做乘法,最终降低其维度,然后输入到softmax层中得到对应的每个类别的得分。

全连接层如此的重要,以至于全连接层过多的参数重要到会造成过拟合,所以也会有一些方法专门用来解决过拟合,比如dropout。

 

在NIN(Network in Network)

### 全局平均池化全局最大池化的概念 #### 全局平均池化 全局平均池化是一种特殊的池化操作,它通过计算特征图中所有元素的算术平均值来减少维度。这种技术可以有效地降低数据量并保留整体信息[^1]。 对于给定的一个二维张量 `input_tensor` ,应用全局平均池化可以通过如下代码实现: ```python from tensorflow.keras.layers import GlobalAveragePooling2D y = GlobalAveragePooling2D()(input_tensor) ``` #### 全局最大池化 相比之下,全局最大池化选取的是特征图中的最大值作为输出。这种方法能够捕捉到最显著的信息点,在某些情况下有助于提高模型对重要特征的关注度[^2]。 同样地,针对相同的输入张量 `input_tensor` ,执行全局最大池化的Python代码片段如下所示: ```python from tensorflow.keras.layers import GlobalMaxPooling2D y = GlobalMaxPooling2D()(input_tensor) ``` ### 主要区别 两者的主要差异在于处理方式的不同:前者取均值而后者找极大值。因此,在面对不同类型的视觉任务时,这两种策略可能会带来不同的效果。通常来说,当希望保持更多的背景信息而不丢失细节的时候可以选择全局平均池化;而在强调突出目标对象或关键区域的情况下,则更适合采用全局最大池化。 ### 使用场景 选择哪种形式取决于具体的计算机视觉应用场景以及待解决问题的本质特性。例如,在物体检测领域可能更倾向于利用全局最大池化以增强对特定部位敏感性的表现力;而对于分类任务而言,有时会发现全局平均池化能提供更加稳定的结果[^3]。
评论 13
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值