Global Average Pooling全局平均池化的一点理解

本文介绍了深度学习中全局平均池化(Global Average Pooling, GAP)的概念及其与传统池化方法的区别。通过对比全连接层,揭示了GAP在减少参数量、提高训练效率和防止过拟合方面的优势。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

 

Traditional Pooling Methods

要想真正的理解Global Average Pooling,首先要了解深度网络中常见的pooling方式,以及全连接层。

众所周知CNN网络中常见结构是:卷积、池化和激活。卷积层是CNN网络的核心,激活函数帮助网络获得非线性特征,而池化的作用则体现在降采样:保留显著特征、降低特征维度,增大kernel的感受野。深度网络越往后面越能捕捉到物体的语义信息,这种语义信息是建立在较大的感受野基础上。已古人的例子来做解释,想必大家都知道盲人摸象这个成语的来历,每个盲人只能触摸到大象的一部分,也就是只能获得local response,基于这些local response,盲人们很难猜对他们到底在摸什么。即使是一个明眼人,眼睛紧贴这大象后背看,也很难猜到看的是什么。这个例子告诉我们局部信息很难提供更高层的语义信息,因此对feature map降维,进而增大后面各层kernel的感受野是一件很重要的事情。另外一点值得注意:pooling也可以提供一些旋转不变性。


Fully Connected layer

很长一段时间以来,全连接网络一直是CNN分类网络的标配结构。一般在全连接后会有激活函数来做分类,假设这个激活函数是一个多分类softmax,那么全连接网络的作用就是将最后一层卷积得到的feature map stretch成向量,对这个向量做乘法,最终降低其维度,然后输入到softmax层中得到对应的每个类别的得分。

全连接层如此的重要,以至于全连接层过多的参数重要到会造成过拟合,所以也会有一些方法专门用来解决过拟合,比如dropout。

 

在NIN(Network in Network)

评论 13
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值