LightGBM使用示例

# 导入相关模块
import lightgbm as lgb
from lightgbm import early_stopping
from sklearn.metrics import accuracy_score
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
import matplotlib.pyplot as plt
# 导入iris数据集
iris = load_iris()
data = iris.data
target = iris.target
# 数据集划分
X_train, X_test, y_train, y_test = train_test_split(data, target, test_size=0.2, random_state=43)
# 创建lightgbm分类模型
gbm = lgb.LGBMClassifier(objective='multiclass',
                         num_class=3,
                         num_leaves=31,
                         learning_rate=0.05,
                         n_estimators=20)
# 模型训练
callbacks = [early_stopping(stopping_rounds=5)]
gbm.fit(X_train, y_train, eval_set=[(X_test, y_test)],callbacks=callbacks)
# 预测测试集
y_pred = gbm.predict(X_test, num_iteration=gbm.best_iteration_)
# 模型评估
print('Accuracy of lightgbm:', accuracy_score(y_test, y_pred))
lgb.plot_importance(gbm)
plt.show()

使用 LightGBM 对鸢尾花数据集进行分类的代码解析


1. 导入相关模块
import lightgbm as lgb
from lightgbm import early_stopping
from sklearn.metrics import accuracy_score
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
import matplotlib.pyplot as plt
  • lightgbm:导入 LightGBM 的 Python 接口,用于构建和训练模型。
  • early_stopping:从 LightGBM 中导入早停函数,防止过拟合。
  • accuracy_score:用于计算模型的准确率。
  • load_iris:加载鸢尾花数据集的函数。
  • train_test_split:用于将数据集拆分为训练集和测试集。
  • matplotlib.pyplot:用于数据可视化,绘制特征重要性图等。

2. 导入鸢尾花数据集
iris = load_iris()
data = iris.data
target = iris.target
  • load_iris():加载鸢尾花数据集,该数据集包含 150 个样本,每个样本有 4 个特征,目标变量有 3 个类别(0,1,2)。
  • data:特征矩阵,大小为 (150, 4)。
  • target:目标向量,大小为 (150,)。

3. 数据集划分
X_train, X_test, y_train, y_test = train_test_split(
    data, target, test_size=0.2, random_state=43
)
  • train_test_split():将数据集划分为训练集和测试集。
    • test_size=0.2:测试集占 20%。
    • random_state=43:设置随机数种子,保证结果可重复。

4. 创建 LightGBM 分类模型
gbm = lgb.LGBMClassifier(
    objective='multiclass',
    num_class=3,
    num_leaves=31,
    learning_rate=0.05,
    n_estimators=20
)
  • LGBMClassifier:初始化一个 LightGBM 分类器。
    • objective=‘multiclass’:设置目标函数为多分类。
    • num_class=3:类别数量为 3。
    • num_leaves=31:树的最大叶子节点数,控制模型复杂度。
    • learning_rate=0.05:学习率,控制每次迭代的步长。
    • n_estimators=20:弱学习器(决策树)的数量。

5. 模型训练
callbacks = [early_stopping(stopping_rounds=5)]
gbm.fit(
    X_train, y_train,
    eval_set=[(X_test, y_test)],
    callbacks=callbacks
)
  • callbacks:设置回调函数列表,这里使用早停法。
    • early_stopping(stopping_rounds=5):如果在 5 次迭代中,验证集的指标没有提升,则停止训练。
  • eval_set:指定验证集,用于监控模型在训练过程中的性能。

6. 预测测试集
y_pred = gbm.predict(X_test, num_iteration=gbm.best_iteration_)
  • predict():对测试集进行预测。
    • num_iteration=gbm.best_iteration_:使用在验证集上表现最好的迭代次数。

7. 模型评估
print('Accuracy of lightgbm:', accuracy_score(y_test, y_pred))
lgb.plot_importance(gbm)
plt.show()
  • accuracy_score(y_test, y_pred):计算模型的准确率。
  • lgb.plot_importance(gbm):绘制特征重要性图,显示各特征对模型的贡献度。
  • plt.show():显示绘制的图形。

深入理解

早停法(Early Stopping)
  • 作用:防止模型过拟合,提高泛化能力。
  • 原理:监控验证集的性能指标,如果在若干次迭代内没有提升,则提前停止训练。
特征重要性
  • 意义:衡量每个特征在模型决策中的作用大小。
  • 计算方法:根据特征在树结构中的分裂次数、信息增益等指标计算。

参数说明

  • objective:定义了损失函数类型。
    • ‘multiclass’:多分类损失函数。
  • num_class:类别数,必须与数据集实际类别数一致。
  • num_leaves:树的最大叶子数,值越大,模型越复杂。
  • learning_rate:学习率,值越小,模型训练越慢,但可能获得更好的效果。
  • n_estimators:弱学习器的数量,过大可能导致过拟合。
  • stopping_rounds:早停法中没有提升的迭代次数阈值。

可能的改进方向

  1. 参数调优

    • Grid Search 或 Random Search:使用网格搜索或随机搜索来寻找最优参数组合。
    • 调整 num_leaves:根据数据集规模和复杂度,调整叶子节点数。
    • 增加 n_estimators:在控制过拟合的前提下,增加弱学习器数量。
  2. 交叉验证

    • 使用 K 折交叉验证,提高模型评估的可靠性。
  3. 特征工程

    • 特征选择:去除不相关或冗余的特征。
    • 特征构造:创建新的特征以捕获更多信息。
  4. 处理类别不平衡

    • 如果类别分布不均衡,可以调整 class_weight 参数。

注意事项

  • LightGBM 的优势

    • 高效性:训练速度快,内存占用低。
    • 准确性:在很多任务上都能取得较高的准确率。
    • 易用性:接口友好,参数丰富。
  • 数据预处理

    • LightGBM 能够自动处理缺失值和类别特征,但良好的数据预处理仍然重要。

运行结果示例

Accuracy of lightgbm: 0.9666666666666667
  • 解释:模型在测试集上的准确率为 96.67%,表现良好。

  • 特征重要性图
    在这里插入图片描述

    • 图中显示了各个特征的重要性,有助于理解模型决策过程。

结论

通过以上代码,您成功地使用 LightGBM 对鸢尾花数据集进行了多分类任务的建模和评估。该示例展示了 LightGBM 的基本用法,包括模型创建、训练、预测和评估。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

彬彬侠

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值