GPT-4(Generative Pre-trained Transformer 4)模型
GPT-4(Generative Pre-trained Transformer 4)是 OpenAI 在 2023 年 3 月发布的 第四代 GPT 语言模型,相较于 GPT-3 和 GPT-3.5,GPT-4 具备更强的推理能力、更高的文本生成质量,并首次支持多模态输入(文本+图像)。
官方发布公告:OpenAI GPT-4
GPT-4 不仅提升了文本处理能力,还扩展到更广泛的应用场景,如编程、图像理解、对话AI、智能客服、医学、法律等。
1. GPT-4 的核心特点
GPT-4 主要创新点包括:
- 更强的文本理解和推理能力
- 支持多模态输入(文本 + 图像)
- 更稳定、更一致的文本生成
- 更强的上下文处理能力
- 更高的安全性和对抗性
- 更广泛的应用领域
1.1 更强的文本理解和推理能力
GPT-4 在逻辑推理、数学计算、代码理解和语言表达方面,比 GPT-3.5 更强:
- 更复杂的推理(如数学问题、逻辑题)
- 更好的文本生成(更少语法错误、更自然)
- 更精准的事实性(减少幻觉 Hallucination)
GPT-4 在标准 NLP 评测(MMLU, BIG-bench)上远超 GPT-3.5,在 法律、医学、编程、金融等专业领域 取得更高分数。
1.2 支持多模态输入(文本 + 图像)
GPT-4 是 OpenAI 第一款支持文本 + 图像输入的 GPT 版本,可以:
- 解析图片中的文本、表格、数学公式
- 理解复杂的图像内容
- 分析图表、图示、手写笔记
示例
- 输入:上传一张 数学题图片
- GPT-4 识别并解析题目,给出详细解答
相比于 GPT-3.5 仅支持纯文本,GPT-4 扩展到图像理解任务,更接近 通用人工智能(AGI)。
1.3 更稳定、更一致的文本生成
GPT-4 比 GPT-3.5 生成的文本更加流畅、一致性更高:
- 减少逻辑错误、语法错误
- 减少重复内容
- 更符合特定风格(可控制语气、语调、专业度)
示例
- GPT-3.5 可能生成重复句子或语法不通顺的段落。
- GPT-4 生成的文章更加连贯、语法准确、内容更有逻辑。
1.4 更强的上下文处理能力
GPT-4 可以处理更长的上下文信息:
- 标准版 GPT-4:支持 8K token
- GPT-4-32K 版本:支持 32K token
相比 GPT-3.5 最大 4K token,GPT-4 能更好地理解长文档,适用于:
- 长篇对话
- 法律文档分析
- 论文总结
- 复杂代码解析
GPT-4 在超长文本理解方面,远超 GPT-3.5。
1.5 更高的安全性和对抗性
OpenAI 在 GPT-4 训练中加入了更多安全性优化:
- 减少不良信息生成
- 提升事实准确性
- 减少偏见
- 提高道德规范合规性
GPT-4 在有害内容(如仇恨言论、诈骗、暴力内容)的过滤能力,比 GPT-3.5 提升了 82%。
1.6 更广泛的应用领域
GPT-4 被广泛应用于:
- 编程(代码生成、代码修复)
- 法律(合同审查、法律咨询)
- 医疗(医学诊断、药物推荐)
- 教育(自动批改、个性化学习)
- 金融(市场分析、投资建议)
- 写作(小说、论文、新闻)
- 智能助手(客服、虚拟助手)
相比 GPT-3.5,GPT-4 在专业领域(法律、医学、数学、金融)表现更出色。
2. GPT-4 在 OpenAI API 中的使用
GPT-4 主要通过 OpenAI API 访问,Hugging Face 目前没有开源版本。
2.1 安装 OpenAI Python SDK
pip install openai
2.2 调用 GPT-4 进行文本对话
import openai
openai.api_key = "your_api_key"
response = openai.ChatCompletion.create(
model="gpt-4",
messages=[{"role": "user", "content": "Explain the theory of relativity in simple terms."}]
)
print(response["choices"][0]["message"]["content"])
GPT-4 可以进行多轮对话,适用于 AI 助手(如 ChatGPT)。
2.3 使用 GPT-4 进行代码生成
response = openai.ChatCompletion.create(
model="gpt-4",
messages=[{"role": "user", "content": "Write a Python function to sort a list using quicksort."}]
)
print(response["choices"][0]["message"]["content"])
GPT-4 可以生成更高质量的代码,比 GPT-3.5 更稳定。
2.4 处理图像输入(GPT-4V)
GPT-4V(Vision)专门设计用于处理图像输入的多模态版本,但目前仅通过 OpenAI API 提供:
response = openai.ChatCompletion.create(
model="gpt-4-vision-preview",
messages=[{"role": "user", "content": "What do you see in this image?"}],
image="image_path.jpg"
)
print(response["choices"][0]["message"]["content"])
GPT-4 可以分析图片内容,如描述、图表解析、数学公式识别。
3. GPT-4 与其他 Transformer 模型的对比
模型 | 架构 | 参数量 | 主要特点 | 适用任务 |
---|---|---|---|---|
GPT-1 | 仅解码器 | 1.17 亿 | 早期 NLP 预训练 | 文本生成 |
GPT-2 | 仅解码器 | 15 亿 | 长文本生成 | 文章写作、对话 |
GPT-3 | 仅解码器 | 1750 亿 | 强大推理能力 | 问答、翻译、代码 |
GPT-4 | 仅解码器 | 未公开 | 支持图像+文本,推理更强 | 法律、医疗、编程、图像分析 |
BERT | 仅编码器 | 3.4 亿 | 文本理解 | 分类、问答 |
T5 | 编码器-解码器 | 11B | 统一 NLP 任务 | 翻译、摘要、问答 |
GPT-4 比 GPT-3.5 更强,特别是在推理、长文本处理和专业领域应用方面。
4. 结论
- GPT-4 是 OpenAI 最新一代语言模型,支持文本+图像输入,推理能力更强。
- 具备更好的文本生成能力,更少幻觉,更强的数学、逻辑、代码理解能力。
- 支持 8K-32K 上下文,适用于长文本任务,如法律、医学、研究论文。
- 主要通过 OpenAI API 提供服务,可用于聊天机器人、智能客服、编程助手等应用。
- 比 GPT-3.5 更稳定、更准确、更安全,在专业领域有更强的应用价值。
GPT-4 是当前最先进的大语言模型之一,推动了 AI 在智能对话、文本生成、图像理解等领域的发展。