GPT-4 介绍

GPT-4是OpenAI的最新语言模型,支持文本和图像输入,采用Transformer架构并运用强化学习微调。它在学术及专业考试中表现出色,但存在信赖度和时效性问题。为缓解风险,采用了专家对抗测试、模型安全助手和改进的安全指标。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1 简介

本文根据openAI的2023年3月的《GPT-4 Technical Report 》翻译总结的。

原文地址:https://arxiv.org/pdf/2303.08774.pdf

原文确实没有GPT-4 具体的模型结构,openAI向盈利组织、非公开方向发展了。也没透露硬件、训练成本、训练数据、训练方法等。不过也透露了一些思想,比如提出了根据模型小的时候,预测模型大的时候的表现。

GPT-4开始多模态了,支持图片和文本输入,输出文本。GPT-4模型还是沿用AR模型的思路,transformer模型,在一个文档中预测下一个token。GPT-4除了预训练,增加了强化学习微调,即使用了Reinforcement Learning from Human Feedback (RLHF) 。

GPT-4在一些考试如司法考试上取得了top 10%的成绩。而GPT-3.5的成绩在底部10%。

2 预测扩展性

GPT-4是非常大的训练成本,它不能灵活进行特定任务的微调。为此,我们开发了一个基础结构和优化的方法,可以根据模型小的时候,预测模型大的时候的表现。比如使用千分之一到万分之一的GPT-4计算成本就可以预测GPT-4的效果。

loss预测可扩展性

提出了下面公式,可以通过小模型预测GPT-4的loss。

如下图,设GPT-4计算成本为1,x轴前面的就是小模型,y轴是损失loss。随着模型增大到GPT-4,损失loss可以通过小模型进行预测。

HumanEval验证数据集上能力的预测扩展性

提出了下面公式,可以通过小模型预测GPT-4的能力。

其中k和a是正常数,P是验证数据集的一个问题集合子集。

如下图,设GPT-4计算成本为1,x轴前面的就是小模型。随着模型增大到GPT-4,大模型能力可以通过小模型进行预测。

3 GPT-4能力

如下图,GPT-4比GPT-3.5更好的通过各种学术和专业考试。

GPT-4在考试方面的能力不是太依靠强化学习RLHF,在多项选择题上,GPT-4和RLHF模型的表现差不多相等。

4 视觉输入

GPT-4支持图片和文本的任意排列的输入。

如下图,问GPT-4图片中有什么有趣的事情?分别逐张描述。GPT-4准确的描述出:图片将过时的VGA连接头插入现代手机进行充电。

5 模型缺点

GPT-4和以前GPT版本有类似的限制,最重要的是它不是完全可以信赖的。

GPT-4的训练数据是截至2021年9月的,所以没有最新的新闻事件。有时它也会犯错,或者被用户欺骗。它也不能处理很难的问题(人类可以处理)。

GPT-4有时可能对自己的输出过于自信。

6 缓解风险

a)利用专家知识对抗测试(Adversarial Testing via Domain Experts

b)搭建模型安全助手(Model-Assisted Safety Pipeline):包括两个主要成员,一个是利用额外的进行安全相关的RLHF训练提示数据集,一个基于规则的奖励模型(RBRMs)。

rule-based reward models (RBRMs)是一个zero-shot的GPT-4分类器。这个分类器在GPT-4进行RLHF微调时提高一个额外的奖励信号,使得GPT-4倾向于正确的行为,拒绝生成有害的内容,或者不要拒绝无害的请求。

c)Improvements on Safety Metrics:在RealToxicityPrompts数据集上,GPT-4仅有0.73%的时间产生有毒的内容,而GPT-3.5是6.48%时间产生有毒内容。

<think>好的,我需要回答用户关于GPT-4o的版本介绍和功能特点的问题。首先,我要收集所有相关的引用信息。用户提供了三个引用,分别是关于多语言增强、处理速度和成本效益;GPT-4o mini的介绍;以及多模态能力和安全性。接下来,我需要将这些信息整理成一个结构清晰的回答,包括版本概述、核心功能和优化,以及安全性和应用场景。 首先,版本概述部分应该包括模型定位和定价策略。引用[1]提到GPT-4o处理速度更快,价格更低,还有多语言改进,这部分可以作为版本定位和API优化的内容。引用[2]提到GPT-4o mini是成本效益最高的版本,需要单独说明。 核心功能方面,引用[3]详细描述了多模态能力,包括文本与图像结合、视频处理,这部分需要分点说明。同时,引用[1]的多语言增强也是核心功能的一部分。性能优化部分需要整合处理速度和成本信息。 安全性和伦理部分,引用[3]提到了安全过滤机制和伦理规范,可以分点展开。应用场景则需要结合多模态功能,举例如教育、医疗等领域的应用,并引用相关部分。 相关问题部分,需要生成与模型优化、多模态应用、语言处理相关的问题,确保覆盖用户可能感兴趣的方面。 最后,确保使用正确的中文表达,行内公式用$...$,独立公式用$$...$$,但在这个问题中可能不太涉及数学公式,不过要检查是否有需要的地方。同时,引用标识要自然添加在引用的句子末尾,如[^1]、[^2]、[^3]。 现在,整合所有信息,确保结构清晰,每个部分有对应的引用支持,语言流畅自然。</think>### GPT-4o版本介绍与功能特点 #### 1. **版本概述** - **模型定位**:GPT-4o是OpenAI推出的新一代多模态大语言模型,强调高效性与多模态能力,支持文本、图像、视频等多种输入输出形式。 - **定价策略**:其API处理速度是GPT-4 Turbo的两倍,价格降低50%,且速率限制更高,适合大规模应用场景。 - **子版本**:GPT-4o mini作为其轻量级版本,以更低的成本提供核心功能,适合中小型项目或高频调用需求。 #### 2. **核心功能** - **多模态能力** - **文本与图像结合**:可生成图文混合内容(如自动图像描述、跨模态检索),并支持图像生成[^3]。 - **视频处理**:新增视频内容理解和生成能力,适用于视频编辑、内容创作等领域。 - **语言处理增强** - **多语言优化**:在50种语言中表现更优,非英语任务(如翻译、语义分析)准确率显著提升。 - **性能优化** - **高效推理**:API响应速度更快,支持实时交互场景(如客服、教育工具)。 #### 3. **安全性与伦理规范** - **安全过滤机制**:内置内容审核系统,减少有害或偏见性输出。 - **伦理对齐**:训练过程中融入伦理约束,确保生成内容符合社会规范。 #### 4. **应用场景** - **教育**:支持图文并茂的课件生成或跨语言教学工具开发。 - **医疗**:辅助医学影像分析与多语言病例报告撰写。 - **商业**:自动化视频广告生成、多语言客服系统等[^2]。
评论 12
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI强仔

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值