《聪明的投资者》读书笔记

介绍被奉为“股票投资圣经”的书,作者本杰明·格林厄姆是价值投资鼻祖。对比巴菲特和格雷厄姆投资境遇,阐述格雷厄姆核心投资原则,如重视企业内在价值、坚持“安全边际”等,还总结其关于股票和基金投资的建议,推荐阅读此书投资。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

本书一直被奉为"股票投资圣经",作者-本杰明·格林厄姆是价值投资理论的开山鼻祖、股神巴菲特的投资教父。作为他所生活的那个时代的最佳投资人之一,格雷厄姆把这个被迷信、臆测所左右的投机活动转变成了一种现代职业。

巴菲特是幸运的,他的投资生涯肇始于美股历史上最长牛市的开始。在牛市中操作,普通人只要秉承长期投资的理念必然都能从股市获取不错的收益,更何况是股神呢?

反观格雷厄姆,就没那么好运了,他闯过1929~1932的大萧条,此后一直在牛市的废墟上交易,直到1956年退休。但从1936~1956年间,他管理的资金年平均收益率不低于14.7%,高于同期股票市场12.2%的整体收益率。这一成绩可以跻身华尔街有史以来最佳长期收益率之列。

格雷厄姆是怎么做到的?作者将自己的核心投资原则在本书中毫无保留地道出:

  • 股票不仅仅是一个交易代码,而是表明拥有一个实实在在的企业的所有权;企业的内在价值并不依赖于其股票价格。
  • 市场就像一只钟摆,永远在短命的乐观和不合理的悲观之间摇摆。聪明的投资者则是现实主义者,他们向乐观主义者卖出股票,并从悲观主义者手中买进股票。
  • 每一笔投资的未来价值是其现在价格的函数。你付出的价格越高,你的回报就越少。
  • 无论如何谨慎,每个投资者都免不了犯错误。因此必须坚持"安全边际"原则——无论一笔投资多么令人神往,永远都不要支付过高的价格。购买股票要像购买食品杂货一样,而不要像买香水一样。
  • 投资成功的秘诀在于你的内心。通过培养自己的约束力和勇气,你就不会让他人的情绪波动来左右你的投资目标。说到底,你的投资方式永远不如你的行为方式重要。

第一次阅读此书,有一种兴奋和愉悦的感觉。像所有的经典著作一样,这本书改变了我看待投资的方式。非常推荐大家看完这本书再去进行证券投资,会少交很多学费,少走不必要的弯路。坚定地以格雷厄姆的方式去投资,任何人都能从股市从获取适当的(6%~12%)稳定收益。

下面总结分享一下,格雷厄姆关于股票和基金投资的建议:

  • 防御性投资者应该将其资金分配于高等级债券和蓝筹股上,其中债券所占比例在[25%~75%]。市场处于高位时,减少持股比例;处于低位时,将持股量提升到75%。
  • 平均成本法:每月或每季度投入同等数额的资金来购买股票。
  • 防御性投资者的预期收益为年化6%左右,不要企图战胜市场平均业绩。
  • 稳健投资的秘诀就是——“安全边际”(marjin of safety),必须坚持“低买高卖"。
  • 获得令人满意的投资结果,比大多数人想象的要简单;获得非常好的投资结果,比人们想象的要难。
  • 积极型投资者要关注那些在一段时间已不受欢迎的大公司。
  • 出于对人性的考虑,我们才主张在投资者的证券组合中采用某种机械的方法,调整债券与股票之间的比重。这种方法的主要好处就在于,它使得投资者有事可做
  • 有很强的证据表明,基金规模较小是持续获得优异结果的一个必要因素。
  • 在投资业绩大致相同的情况下,购买封闭式基金的总体回报极有可能高于开放式基金。
  • 聪明的投资者不会完全依赖金融服务公司提供的建议来从事买卖交易。
  • 选择一个满意的投资顾问,与自己独立地选择恰当的证券几乎是一样困难。人们会随意给出许多不良的建议。

在当今计算机视觉领域,深度学习模型在图像分割任务中发挥着关键作用,其中 UNet 是一种在医学影像分析、遥感图像处理等领域广泛应用的经典架构。然而,面对复杂结构和多尺度特征的图像,UNet 的性能存在局限性。因此,Nested UNet(也称 UNet++)应运而生,它通过改进 UNet 的结构,增强了特征融合能力,提升了复杂图像的分割效果。 UNet 是 Ronneberger 等人在 2015 年提出的一种卷积神经网络,主要用于生物医学图像分割。它采用对称的编码器 - 解码器结构,编码器负责提取图像特征,解码器则将特征映射回原始空间,生成像素级预测结果。其跳跃连接设计能够有效传递低层次的细节信息,从而提高分割精度。 尽管 UNet 在许多场景中表现出色,但在处理复杂结构和多尺度特征的图像时,性能会有所下降。Nested UNet 通过引入更深层次的特征融合来解决这一问题。它在不同尺度上建立了密集的连接路径,增强了特征的传递与融合。这种“嵌套”结构不仅保持了较高分辨率,还增加了特征学习的深度,使模型能够更好地捕获不同层次的特征,从而显著提升了复杂结构的分割效果。 模型结构:在 PyTorch 中,可以使用 nn.Module 构建 Nested UNet 的网络结构。编码器部分包含多个卷积层和池化层,并通过跳跃连接传递信息;解码器部分则包含上采样层和卷积层,并与编码器的跳跃连接融合。每个阶段的连接路径需要精心设计,以确保不同尺度信息的有效融合。 编码器 - 解码器连接:Nested UNet 的核心在于多层次的连接。通过在解码器中引入“skip connection blocks”,将编码器的输出与解码器的输入相结合,形成一个密集的连接网络,从而实现特征的深度融合。 训练与优化:训练 Nested UNet 时,需要选择合适的损失函数和优化器。对于图像分割任务,常用的损失
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值