卡尔曼滤波推导

参考论文:
http://www.cl.cam.ac.uk/~rmf25/papers/Understanding%20the%20Basis%20of%20the%20Kalman%20Filter.pdf
知乎上Kent Zeng博士的回答言简意赅,当时看了后觉得醍醐灌顶,但是还是想自己推导一遍,所以就参照了上面这篇论文。
这篇博客也是为了练习markdown的语法,所以大神可以略过,有错误请指正,求轻喷:-D
1.卡尔曼滤波典型应用:
(1)平滑噪声数据;
(2)参数估计。
(3)实例:阿波罗计划,卫星导航设备,智能手机,电脑游戏。
2.高斯分布的重要特性: 两个高斯分布的乘积仍然是一个高斯分布。
3.数学模型
(1)运动方程:
x t = F t x t − 1 + B t u t + w t (1) \boldsymbol x_{t}=\boldsymbol F_{t}\boldsymbol x_{t-1}+\boldsymbol B_{t}\boldsymbol u_{t}+\boldsymbol w_{t} \qquad\text{(1)} xt=Ftxt1+Btut+wt(1)
x t \boldsymbol x_{t} xt——状态向量,包含系统有意义的项,例如t时刻的位置,速度,朝向等。
u t \boldsymbol u_{t} ut——控制输入向量,例如航向角,节流阀设置,抱闸力等。
F t \boldsymbol F_{t} Ft——状态转换矩阵,t-1时刻的状态对t时刻的系统状态的影响,例如t-1时刻的位置和速度都会影响t时刻的系统状态。
B t \boldsymbol B_{t} Bt——控制输入矩阵,控制输入参数对状态向量的影响。例如,节流阀的设置对系统速度和位置的影响。
w t \boldsymbol w_{t} wt——状态向量中每个参数的过程噪声。该噪声是一个零均值多元高斯正太分布,协方差矩阵为 Q t \boldsymbol Q_t Qt
(2)测量方程:
z t = H t x t + v t (2) \boldsymbol z_{t}=\boldsymbol H_{t}\boldsymbol x_{t}+\boldsymbol v_{t}\qquad\text{(2)} zt=Htxt+vt(2)
z t \boldsymbol z_{t} zt——测量向量。
H t \boldsymbol H_{t} Ht——转换矩阵,将状态向量参数映射到测量域上。
v t \boldsymbol v_{t} vt——测量向量噪声。和过程噪声一样,该噪声也是零均值的高斯白噪声,协方差矩阵为 R t \boldsymbol R_{t} Rt
4.实例推导
实例:一维的跟踪问题,火车沿着铁轨运动。
状态向量 x t \boldsymbol x_t xt包含火车的位置和速度: x t = ( x t x t ˙ ) x_{t}=\begin{pmatrix} x_{t} \\ \dot{x_{t}} \\ \end{pmatrix} xt=(xtxt˙)
列车驱动可能会施加刹车或者加速输入给系统,可以用牛顿方程,用一个外力 f t f_{t} ft和列车质量m表示,控制向量 u t \boldsymbol u_{t} ut为: u t = f t m \boldsymbol u_{t}=\frac{f_{t}}{m} ut=mft

∆t时间段内,驱动力和列车的位置和速度的关系可以列为如下方程:
x t = x t − 1 + ( x t − 1 ˙ × Δ t ) + f t ( Δ t ) 2 m x_{t}=x_{t-1}+(\dot{x_{t-1}}\times\Delta t)+\frac{f_{t}(\Delta t)^2}{m} xt=xt1+(xt1˙×Δt)+mft(Δt)2
x t ˙ = x t − 1 ˙ + f t Δ t 2 m \dot{x_t}=\dot{x_{t-1}}+\frac{f_{t}\Delta t}{2m} xt˙=xt1˙+2mftΔt

这些线性方程可以写为如下矩阵形式:
( x t x t ˙ ) = ( 1 Δ t 0 1 ) ( x t − 1 x t − 1 ˙ ) + ( ( Δ t ) 2 2 Δ t ) f t m \begin{pmatrix} x_{t} \\ \dot{x_t}\\ \end{pmatrix} =\begin{pmatrix} 1 & \Delta t\\ 0 & 1\\ \end{pmatrix} \begin{pmatrix} x_{t-1} \\ \dot{x_t-1}\\ \end{pmatrix}+\begin{pmatrix} \frac{(\Delta t)^2}{2}\\ \Delta t\\ \end{pmatrix} \frac{f_t}{m} (xtxt˙)=(10Δt1)(xt1xt1˙)+(2(Δt)2Δt)mft

对照方程(1) x t = F t x t − 1 + B t u t + w t x_{t}=F_{t}x_{t-1}+B_{t}u_{t}+w_{t} xt=Ftxt1+Btut+wt,可以得到:
F t = ( 1 Δ t 0 1 ) a n d B t = ( ( Δ t ) 2 2 Δ t ) \boldsymbol F_{t}=\begin{pmatrix} 1&\Delta t \\ 0&1\end{pmatrix} and \quad \boldsymbol B_{t}=\begin{pmatrix} \frac{(\Delta t)^2}{2} \\ \Delta t\end{pmatrix} Ft=(10Δt1)andBt=(2(Δt)2Δt)

系统的真实状态 x t x_{t} xt不能直接测量,卡尔曼滤波提供可以确定估计量 x t x_{t} xt的算法,通过结合系统模型和确定值或者线性方程的噪声参数。状态向量的参数估计值可以通过概率密度函数提供,而不是离散值。卡尔曼滤波是基于高斯概率密度函数的,为了完整描述高斯方程,我们需要知道他们的变量协方差,这些都写在矩阵 P t P_{t} Pt中, P t P_t Pt的主对角线上的元素对应状态向量的变量,非对角线的元素对应于状态向量的变量与变量之间的协方差。
卡尔曼滤波算法包含两个阶段:预测和更新
标准卡尔曼滤波算法的**预测过程**为:
x t ∣ t − 1 ^ = F t x t − 1 ∣ t − 1 ^ + B t u t (3) \hat{\boldsymbol x_{t|t-1}}=\boldsymbol F_{t}\hat{\boldsymbol x_{t-1|t-1}}+\boldsymbol B_{t}\boldsymbol u_{t}\qquad\text{(3)} xtt1^=Ftxt1t1^+Btut(3)
P t ∣ t − 1 = F t P t − 1 ∣ t − 1 F t T + Q t (4) \boldsymbol P_{t|t-1}=\boldsymbol F_{t}\boldsymbol P_{t-1|t-1}\boldsymbol F^{\boldsymbol T}_{t}+\boldsymbol Q_t\qquad\text{(4)} Ptt1=FtPt1t1FtT+Qt(4)

其中,Q_t是过程噪声的协方差,也就是控制噪声。前一部分是对(3)式的推导,下面推导(4)式。
未知的真值 x t x_t xt的预测值 x ^ t ∣ t − 1 \hat{x}_{t|t-1} x^tt1的方差可以写为: P t ∣ t − 1 = E [ ( x t − x ^ t ∣ t − 1 ) ( x t − x ^ t ∣ t − 1 ) T ] P_{t|t-1}=E[(x_t-\hat{x}_{t|t-1})(x_t-\hat{x}_{t|t-1})^T] Ptt1=E[(xtx^tt1)(xtx^tt1)T]
看下(1)式 x t = F t x t − 1 + B t u t + w t x_{t}=F_{t}x_{t-1}+B_{t}u_{t}+w_{t} xt=Ftxt1+Btut+wt,以及(3)式,可以得到: x t − x ^ t ∣ t − 1 = F t ( x t − 1 − x ^ t − 1 ∣ t − 1 ) + w t x_t-\hat{x}_{t|t-1}=F_t(x_{t-1}-\hat{x}_{t-1|t-1})+w_{t} xtx^tt1=Ft(xt1x^t1t1)+wt
   ⟹    P t ∣ t − 1 = E [ ( F t ( x t − 1 − x ^ t − 1 ∣ t − 1 ) + w t ) ( F t ( x t − 1 − x ^ t − 1 ∣ t − 1 ) + w t ) T ] = E [ F t ( x t − 1 − x ^ t − 1 ∣ t − 1 ) ( x t − 1 − x ^ t − 1 ∣ t − 1 ) T F t T + F t ( x t − 1 − x ^ t − 1 ∣ t − 1 ) w t T + w t ( x t − 1 − x ^ t − 1 ∣ t − 1 ) T F t T + w t w t T ] = F t E [ ( x t − 1 − x ^ t − 1 ∣ t − 1 ) ( x t − 1 − x ^ t − 1 ∣ t − 1 ) T ] F t T + F t E [ ( x t − 1 − x ^ t − 1 ∣ t − 1 ) w t T ] + E [ w t ( x t − 1 − x ^ t − 1 ∣ t − 1 ) T ] F t T + E [ w t w t T ] \implies P_{t|t-1}=E[(F_t(x_{t-1}-\hat{x}_{t-1|t-1})+w_{t})(F_t(x_{t-1}-\hat{x}_{t-1|t-1})+w_{t})^T]=E[F_t(x_{t-1}-\hat{x}_{t-1|t-1})(x_{t-1}-\hat{x}_{t-1|t-1})^TF_{t}^T+F_t(x_{t-1}-\hat{x}_{t-1|t-1})w_t^T+w_t(x_{t-1}-\hat{x}_{t-1|t-1})^TF_t^T+w_tw_t^T]=F_tE[(x_{t-1}-\hat{x}_{t-1|t-1})(x_{t-1}-\hat{x}_{t-1|t-1})^T]F_t^T+F_tE[(x_{t-1}-\hat{x}_{t-1|t-1})w_t^T]+E[w_t(x_{t-1}-\hat{x}_{t-1|t-1})^T]F_t^T+E[w_tw_t^T] Ptt1=E[(Ft(xt1x^t1t1)+wt)(Ft(xt1x^t1t1)+wt)T]=E[Ft(xt1x^t1t1)(xt1x^t1t1)TFtT+Ft(xt1x^t1t1)wtT+wt(xt1x^t1t1)TFtT+wtwtT]=FtE[(xt1x^t1t1)(xt1x^t1t1)T]FtT+FtE[(xt1x^t1t1)wtT]+E[wt(xt1x^t1t1)T]FtT+E[wtwtT]
需要注意,状态估计误差与控制过程噪声是不相关的,因此:
E [ ( x t − 1 − x ^ t − 1 ∣ t − 1 ) w t T ] + E [ w t ( x t − 1 − x ^ t − 1 ∣ t − 1 ) T ] = 0 E[(x_{t-1}-\hat{x}_{t-1|t-1})w_t^T]+E[w_t(x_{t-1}-\hat{x}_{t-1|t-1})^T]=0 E[(xt1x^t1t1)wtT]+E[wt(xt1x^t1t1)T]=0
因此:
P t ∣ t − 1 = E [ F t ( x t − 1 − x ^ t − 1 ∣ t − 1 ) ( x t − 1 − x ^ t − 1 ∣ t − 1 ) T F t T + w t w t T ] P_{t|t-1}=E[F_t(x_{t-1}-\hat{x}_{t-1|t-1})(x_{t-1}-\hat{x}_{t-1|t-1})^TF_{t}^T+w_tw_t^T] Ptt1=E[Ft(xt1x^t1t1)(xt1x^t1t1)TFtT+wtwtT]
   ⟹    P t ∣ t − 1 = F P t − 1 ∣ t − 1 F T + Q t \implies P_{t|t-1}=FP_{t-1|t-1}F^T+Q_t Ptt1=FPt1t1FT+Qt
标准卡尔曼滤波算法的**测量更新过程**为:
x ^ t ∣ t = x ^ t ∣ t − 1 + K t ( z t − H t ) x ^ t ∣ t − 1 (5) \hat{\boldsymbol x}_{t|t}=\hat{\boldsymbol x}_{t|t-1}+\boldsymbol K_t(\boldsymbol z_t-\boldsymbol H_t)\hat{\boldsymbol x}_{t|t-1}\qquad\text{(5)} x^tt=x^tt1+Kt(ztHt)x^tt1(5)
P t ∣ t = P t ∣ t − 1 − K t H t P t ∣ t − 1 (6) \boldsymbol P_{t|t}=\boldsymbol P_{t|t-1}-\boldsymbol K_t\boldsymbol H_t\boldsymbol P_{t|t-1}\qquad\text{(6)} Ptt=Ptt1KtHtPtt1(6)
其中:
K t = P t ∣ t − 1 H t T ( H t P t ∣ t − 1 H t T + R t ) − 1 (7) \boldsymbol K_t=\boldsymbol P_{t|t-1}\boldsymbol H_t^\boldsymbol T(\boldsymbol H_t\boldsymbol P_{t|t-1}\boldsymbol H_t^\boldsymbol T+\boldsymbol R_t)^{-1}\qquad\text{(7)} Kt=Ptt1HtT(HtPtt1HtT+Rt)1(7)
Solution:
卡尔曼滤波器推导中,考虑一个简单的一维跟踪问题,比如列车沿着一条铁轨线运动的例子。每一个测量时间点上,我们期望知道列车位置(或者更精确点,是列车顶部天线的安装位置)的最优估计。
已知的信息是:(1)列车上一次的位置和速度;(2)无线电测量系统的测量值。通过将预测值和测量值结合,得到列车定位的最可能估计,如图1所示。
这里写图片描述
系统的初始状态(t=0s)状态已知,精确度合理,如图2所示,列车的位置是一个高斯分布。
这里写图片描述
在下一个时刻(t=1s),我们可以基于已知的限制条件估计列车的新位置,例如t=0s时刻的位置和速度,最大可能加速度等。实际中,我们可能还知道控制输入,例如刹车制动器和加速装置的输入。无论哪种清理,我们都可以预估列车的一个新位置,如图3所示,列车的位置用一个新的高斯分布来表示。注意,我们可以看到,图3的高斯分布比图1的高斯分布矮胖了很多,这是因为有噪声在里面,不确定性变大了。数学推导上,可以参照式(1)的推导。方差变大,可以参照式(4)的推导,这表示相对t=0时刻,我们减少了精度,因为任何加速度或减速都会带来噪声影响。
这里写图片描述
在t=1时刻,我们也用无线电定位系统测量了列车的位置,如图4所示,蓝色的高斯分布代表了这个测量者,通过结合预测值和测量值,我们能得到的一个最优估计值。可以通过把两个高斯分布相乘,如图5所示。
这里写图片描述
**高斯分布的一个关键特性是:两个高斯分布的乘积仍然是一个高斯分布。**它允许无限多个高斯分布相乘,但是结果并不会将高斯分布的项变复杂。因此,经过一段时间后,新的概率分布仍然是一个高斯分布,这就是卡尔曼滤波器迭代特性的关键。
下面推导卡尔曼滤波的测量更新过程。
图3中代表预测分布的红色高斯分布可以表达为:
y 1 ( r ; μ 1 , σ 1 ) ≜ 1 2 π σ 1 2 e − ( r − μ 1 ) 2 2 σ 1 2 (8) y_1(r;\mu_1,\sigma_1)\triangleq\frac{1}{\sqrt{2\pi\sigma_1^2}}e^{-\frac{(r-\mu_1)^2}{2\sigma_1^2}}\qquad\text{(8)} y1(r;μ1,σ1)2πσ12 1e2σ12(rμ1)2(8)
图4中代表测量分布的蓝色高斯分布可以表达为:
y 2 ( r ; μ 2 , σ 2 ) ≜ 1 2 π σ 2 2 e − ( r − μ 2 ) 2 2 σ 2 2 (9) y_2(r;\mu_2,\sigma_2)\triangleq\frac{1}{\sqrt{2\pi\sigma_2^2}}e^{-\frac{(r-\mu_2)^2}{2\sigma_2^2}}\qquad\text{(9)} y2(r;μ2,σ2)2πσ22 1e2σ22(rμ2)2(9)
如图5所示,将两个高斯分布相乘,新的高斯分布表达了预测和更新的融合结果,而且系统当前估计的最优值,可以由两个高斯函数的乘积给出:
y 1 ( r ; μ 1 , σ 1 , μ 2 , σ 2 ) ≜ 1 2 π σ 1 2 e − ( r − μ 1 ) 2 2 σ 1 2 1 2 π σ 2 2 e − ( r − μ 2 ) 2 2 σ 2 2 = 1 2 π σ 1 2 σ 2 2 e − ( ( r − μ 1 ) 2 2 σ 1 2 + ( r − μ 2 ) 2 2 σ 2 2 ) (10) y_1(r;\mu_1,\sigma_1,\mu_2,\sigma_2)\triangleq\frac{1}{\sqrt{2\pi\sigma_1^2}}e^{-\frac{(r-\mu_1)^2}{2\sigma_1^2}}\frac{1}{\sqrt{2\pi\sigma_2^2}}e^{-\frac{(r-\mu_2)^2}{2\sigma_2^2}}=\frac{1}{\sqrt{2\pi\sigma_1^2\sigma_2^2}}e^{-(\frac{(r-\mu_1)^2}{2\sigma_1^2}+\frac{(r-\mu_2)^2}{2\sigma_2^2})}\qquad\text{(10)} y1(r;μ1,σ1μ2,σ2)2πσ12 1e2σ12(rμ1)22πσ22 1e2σ22(rμ2)2=2πσ12σ22 1e(2σ12(rμ1)2+2σ22(rμ2)2)(10)
将上式的二次项展开,然后整式可以重写为:
y f u s e d ( r ; μ f u s e d , σ f u s e d ) ≜ 1 2 π σ f u s e d 2 e − ( r − μ f u s e d ) 2 2 σ f u s e d 2 (11) y_{fused}(r;\mu_{fused},\sigma_{fused})\triangleq\frac{1}{\sqrt{2\pi\sigma_{fused}^2}}e^{-\frac{(r-\mu_{fused})^2}{2\sigma_{fused}^2}}\qquad\text{(11)} yfused(r;μfused,σfused)2πσfused2 1e2σfused2(rμfused)2(11)
其中,
μ f u s e d = μ 1 σ 2 2 + μ 2 σ 1 2 σ 1 2 + σ 2 2 = μ 1 + σ 1 2 ( μ 2 − μ 1 ) σ 1 2 + σ 2 2 (12) \mu_{fused}=\frac{\mu_1\sigma_2^2+\mu_2\sigma_1^2}{\sigma_1^2+\sigma_2^2}=\mu_1+\frac{\sigma_1^2(\mu_2-\mu_1)}{\sigma_1^2+\sigma_2^2}\qquad\text{(12)} μfused=σ12+σ22μ1σ22+μ2σ12=μ1+σ12+σ22σ12(μ2μ1)(12)
σ f u s e d 2 = σ 1 2 σ 2 2 σ 1 2 + σ 2 2 = σ 1 2 − σ 1 4 σ 1 2 + σ 2 2 (13) \sigma_{fused}^2=\frac{\sigma_1^2\sigma_2^2}{\sigma_1^2+\sigma_2^2}=\sigma_1^2-\frac{\sigma_1^4}{\sigma_1^2+\sigma_2^2}\qquad\text{(13)} σfused2=σ12+σ22σ12σ22=σ12σ12+σ22σ14(13)
上面两个方程表示了卡尔曼滤波器的测量更新步骤,之后会详细展示。然而,为了展示一个更一般的情况,我们需要对这个例子扩展一下。
在上述例子中,是假设预测和更新在相同的坐标系和相同的单位下进行的,这样就形成了更简洁的预测和更新步骤。然后实际中,很重要的是将预测和更新都映射到同一个域中。在这个例子中,列车的位置直接预测为一个沿着铁轨线的距离,单位是米,但是时间测量单位是秒s。为了允许将测量和更新的概率分布相乘,一个值必须转换到另一个域中,而常规做法是,将预测值映射到测量域中,通过转换矩阵 H t H_t Ht
现在重新看下公式(8)和公式(9),这两个式子都是让 y 1 y_1 y1 y 2 y_2 y2表示沿着轨道的值,单位是米。现在,将 y 2 y_2 y2表示为,处在x=0位置处的无线电发射装置,将信号发射到列车顶部的无线电所用的飞行时间。空间域分布 y 1 y_1 y1通过光速因子c映射到测量域上,因此公式(8)和(9)可以重写为:
y 1 ( r ; μ 1 , σ 1 , c ) ≜ 1 2 π ( σ 1 c ) 2 e − ( r − μ 1 c ) 2 2 ( σ 1 c ) 2 (14) y_1(r;\mu_1,\sigma_1,c)\triangleq\frac{1}{\sqrt{2\pi(\frac{\sigma_1}{c})^2}}e^{-\frac{(r-\frac{\mu_1}{c})^2}{2(\frac{\sigma_1}{c})^2}}\qquad\text{(14)} y1(r;μ1,σ1,c)2π(cσ1)2 1e2(cσ1)2(rcμ1)2(14)
图4中代表测量分布的蓝色高斯分布可以表达为:
y 2 ( r ; μ 2 , σ 2 ) ≜ 1 2 π σ 2 2 e − ( r − μ 2 ) 2 2 σ 2 2 (15) y_2(r;\mu_2,\sigma_2)\triangleq\frac{1}{\sqrt{2\pi\sigma_2^2}}e^{-\frac{(r-\mu_2)^2}{2\sigma_2^2}}\qquad\text{(15)} y2(r;μ2,σ2)2πσ22 1e2σ22(rμ2)2(15)
现在,两个分布都被定义在测量域中,无线电信号沿着时间轴s轴传播,测量单位为秒。按照之前的推导结果,可以发现:
μ f u s e d c = μ 1 c + ( σ 1 c ) 2 ( μ 2 − μ 1 c ) ( σ 1 c ) 2 + σ 2 2 \frac{\mu_{fused}}{c}=\frac{\mu_1}{c}+\frac{(\frac{\sigma_1}{c})^2(\mu_2-\frac{\mu_1}{c})}{(\frac{\sigma_1}{c})^2+\sigma_2^2} cμfused=cμ1+(cσ1)2+σ22(cσ1)2(μ2cμ1)
μ f u s e d = μ 1 + ( σ 1 2 c ) + σ 1 2 ( μ 2 − μ 1 ) σ 1 2 + σ 2 2 (16) \mu_{fused}=\mu_1+(\frac{\frac{\sigma_1^2}{c}}{})+\frac{\sigma_1^2(\mu_2-\mu_1)}{\sigma_1^2+\sigma_2^2}\qquad\text{(16)} μfused=μ1+(cσ12)+σ12+σ22σ12(μ2μ1)(16)

H = 1 c H=\frac{1}{c} H=c1 K = H σ 2 H 2 σ 1 2 + σ 2 2 K=\frac{H\sigma^2}{H^2\sigma_1^2+\sigma_2^2} K=H2σ12+σ22Hσ2,从而得到:
μ f u s e d = μ 1 + K ⋅ ( μ 2 − H μ 1 ) (17) \mu_{fused}=\mu_1+K\cdot(\mu_2-H\mu_1)\qquad\text{(17)} μfused=μ1+K(μ2Hμ1)(17)
类似的,可以得到融合后的方差:
σ f u s e d 2 c 2 = ( σ 1 c ) 2 − ( σ 1 c ) 4 ( σ 1 c ) 2 + σ 2 2 \frac{\sigma_{fused}^2}{c^2}=(\frac{\sigma_1}{c})^2-\frac{(\frac{\sigma_1}{c})^4}{(\frac{\sigma_1}{c})^2+\sigma_2^2} c2σfused2=(cσ1)2(cσ1)2+σ22(cσ1)4
⇒ σ f u s e d 2 = σ 1 2 − ( σ 1 2 c ( σ 1 c ) 2 + σ 2 2 ) σ 1 2 c = σ 1 2 − K H σ 1 2 (18) \Rightarrow\sigma_{fused}^2=\sigma_1^2-\left(\frac{\frac{\sigma_1^2}{c}}{\left(\frac{\sigma_1}{c}\right)^2+\sigma_2^2}\right)\frac{\sigma_1^2}{c}=\sigma_1^2-KH\sigma_1^2\qquad\text{(18)} σfused2=σ12((cσ1)2+σ22cσ12)cσ12=σ12KHσ12(18)
现在,和Kalman滤波器的更新方程 ( 5 ) ( 6 ) ( 7 ) (5)(6)(7) (5)(6)(7)对比一下,可以得到:

  • μ f u s e d → x ^ t ∣ t \mu_{fused}\rightarrow\hat{\boldsymbol x}_{t|t} μfusedx^tt融合后的状态向量;
  • μ 1 → x ^ t ∣ t − 1 \mu_1\rightarrow\hat{\boldsymbol x}_{t|t-1} μ1x^tt1融合前的状态向量,也就是预测的状态向量;
  • σ 1 2 → P t ∣ t \sigma_1^2\rightarrow \boldsymbol P_{t|t} σ12Ptt数据融合后的协方差矩阵(置信度);
  • σ 1 2 → P t ∣ t − 1 \sigma_1^2\rightarrow \boldsymbol P_{t|t-1} σ12Ptt1数据融合前的协方差矩阵(置信度);
  • μ 2 → z t \mu_2\rightarrow \boldsymbol z_t μ2zt观测向量;
  • σ 2 2 → R t \sigma_2^2\rightarrow \boldsymbol R_t σ22Rt测量噪声的矩阵(置信度);
  • H → H t H\rightarrow \boldsymbol H_t HHt转换矩阵,用于将状态向量参数映射到测量域;
  • K = H σ 1 2 H 2 σ 1 2 + σ 2 2 → K t = P t ∣ t − 1 H t T ( H t P t ∣ t − 1 H t T + R t ) − 1 K=\frac{H\sigma_1^2}{H^2\sigma_1^2+\sigma_2^2}\rightarrow \boldsymbol K_t=\boldsymbol P_{t|t-1}\boldsymbol H_t^\boldsymbol T(\boldsymbol H_t \boldsymbol P_{t|t-1} \boldsymbol H_t^{\boldsymbol T}+\boldsymbol R_t)^{-1} K=H2σ12+σ22Hσ12Kt=Ptt1HtT(HtPtt1HtT+Rt)1Kalman增益。
    现在,可以很容易观察标准Kalman滤波方程和(17)(18)之间的关系:
    μ f u s e d = μ 1 + ( H σ 1 2 H 2 σ 1 2 + σ 2 2 ) ⋅ ( μ 2 − H μ 1 ) \mu_{fused}=\mu_1+\left(\frac{H\sigma_1^2}{H^2\sigma_1^2+\sigma_2^2}\right)\cdot (\mu_2-H\mu_1) μfused=μ1+(H2σ12+σ22Hσ12)(μ2Hμ1)
    → x ^ t ∣ t = x ^ t ∣ t − 1 + K t ( z t = H t x ^ t ∣ t − 1 ) \rightarrow \hat{\boldsymbol x}_{t|t}=\hat{\boldsymbol x}_{t|t-1}+\boldsymbol K_t(\boldsymbol z_t=\boldsymbol H_t\hat{\boldsymbol x}_{t|t-1}) x^tt=x^tt1+Kt(zt=Htx^tt1)
    σ f u s e d 2 = σ 1 2 − ( H σ 1 2 H 2 σ 1 2 + σ 2 2 ) H σ 1 2 \sigma_{fused}^2 = \sigma_1^2-\left(\frac{H\sigma_1^2}{H^2\sigma_1^2+\sigma_2^2}\right)H\sigma_1^2 σfused2=σ12(H2σ12+σ22Hσ12)Hσ12
    → P t ∣ t = P t ∣ t − 1 − K t H t P t ∣ t − 1 \rightarrow \boldsymbol P_{t|t} = \boldsymbol P_{t|t-1}-\boldsymbol K_t \boldsymbol H_t \boldsymbol P_{t|t-1} Ptt=Ptt1KtHtPtt1
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: pt100温度传感器电路是一种常用的温度测量电路,它基于铂电阻的温度特性。Pt100传感器是一种由纯铂制成的电阻元件,其电阻值随温度的变化而变化。 Pt100温度传感器电路一般由以下几个部分组成:传感器本身、电流源、电压测量电路和信号处理电路。 首先,电流源提供一个稳定的直流电流,通常为1mA或10mA。这个电流流过Pt100传感器,导致Pt100内部产生热量,根据电阻值和电流大小可以计算出外界温度。 其次,电压测量电路测量传感器两端的电压。由于传感器的电阻值与温度成正比,因此可以根据测量到的电压值计算出温度。 最后,信号处理电路对测量到的电压进行放大和修正,以确保测量结果的准确性和稳定性。这个电路通常包括放大器、滤波器和ADC转换器等组件。 需要注意的是,在实际应用中,Pt100温度传感器电路还需要考虑线性度、输出范围、抗干扰能力等因素。为了提高传感器的精度和可靠性,还可以采用温度补偿、自动校准和故障检测等技术。 总之,Pt100温度传感器电路是一种常用的温度测量电路,通过测量Pt100传感器的电阻值和电压,可以准确地获取外界的温度信息。这种电路在工业自动化、医疗设备、气象观测等领域广泛应用。 ### 回答2: PT100温度传感器电路是一种用于测量温度的电路。PT100温度传感器是以白金(Pt)材料制成的电阻元件,其电阻值随着温度的变化而变化。 PT100温度传感器电路通常由以下几部分组成:电源、电阻变换器和测量电路。首先,电源提供电流,通常是恒定的直流电源,以供电阻变换器和测量电路使用。其次,电阻变换器将传感器的电阻值转换为可测量的电压或电流信号。常见的电阻变换器包括电桥电路、差分放大电路和电阻比较器电路。最后,测量电路将转换后的信号进行放大、滤波和精确测量,以得到准确的温度数值。 PT100温度传感器电路的工作原理是基于PT100传感器的电阻-温度特性。根据国际标准,PT100传感器的电阻值在0℃下为100欧姆,随着温度的升高或降低,其电阻值按照特定的曲线进行变化。传感器的电阻与温度之间的关系可以通过查找温度-电阻表或使用特定的算法进行计算。 在PT100温度传感器电路中,精确度和稳定性非常重要。因此,在电路设计中应注意抗干扰能力、温度补偿、放大器的增益和精确的模拟数字转换等因素。此外,为了提高系统的可靠性,还应考虑使用适当的保护电路、自校准功能和电源稳压电路。 总之,PT100温度传感器电路是一种用于测量温度的电路,通过将温度转换为电阻值,并经过电阻变换器和测量电路将其转换为可测量的电压或电流信号。精确度和稳定性在电路设计中非常重要,需要考虑抗干扰能力、温度补偿、放大器的增益和精确的模拟数字转换等因素。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值