基于采样的规划算法之RRT家族(二):RRT-Connect

本文介绍了RRT家族中的RRT-Connect算法,它是双向RRT的改进版,增加了贪婪策略。文章首先阐述了双向RRT的工作原理,接着详细解释了RRT-Connect的实现过程,包括拓展节点、判断树交叠和路径回溯等关键步骤,并通过实例展示了算法的应用。最后,总结了RRT-Connect相对于原始RRT和双向RRT的优势。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

RRT家族和 A* 家族的共性是:都是生成一棵不断靠近目标的路径树。只是生成的方式不同,RRT家族通过随机采样结点来拓展路径树, A* 家族则基于贪心策略在规划问题图(graph)上搜索叶点来拓展路径树。RRT家族与 A* 家族的共性确定了它们的发展路线惊人的相似。RRT-Connect是在双向RRT算法的基础上增加了一个贪心策略,其本质上还是一个改进版本的双向RRT算法。说到这儿,还没想起什么吗?对的,A* 算法也有个双向的版本。不多说,我们开始进入正题。

一、先从双向RRT说起

A* 家族中的双向 A* 算法是为了解决起点与终点位置互换引起路径搜索效率差异很大的问题。如果严格按所占用的计算资源来算,双向 A* 算法并不一定会比原始 A* 算法的效率高。那如果从可并行计算角度来看,双向 A* 算法的确能够做出比原始 A* 算法耗费更低的时间成本。就像两头开工的隧道工程的确会比一头开工的要快,我们需要注意的是那快出来的效率主要是因为那多出的一半人力。

其实,双向RRT的目的和双向 A* 算法一致,具体参见基于图搜索的规划算法之 A* 家族(二):双向 A* 算法中的背景。

但是,

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

windSeS

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值