高等数学 第八讲 积分学计算
1.不定积分的计算
1.1 基本积分公式
基本中的基本,熟练掌握,肌肉记忆
1.2 不定积分的计算方法
1.2.1 凑微分法
dx配凑成d[]的形式,让整体可以使用基本积分公式
1.2.2 换元法
核心思想:当被积函数不容易积分,但是能够求导,采用换元法这种思想,比如含有根式或反三角函数时,可以通过换元法的思想,将d后面的东西,拿出来一部分到前面来。
1.根式相关:
2️⃣的情况中,可以再变为1之后,令1中x的位置为t,如张宇基础172页例9.15
2.反三角函数相关:
像反三角函数这种的,被积函数中含有ax,ex,lnx,arcsinx,arctanx等时,令复杂函数=t
3.倒代换
当被积函数分母的的幂次比分子高两次及以上时,作倒代换,令x=1/t
1.2.3 分布积分法
∫udv比较困难,∫vdu比较简单
∫udv=uv-∫vdu
1.2.4 有理函数的积分计算(待更新)
1.2.5 不定积分的一些计算结论总结
结论1:形如∫eaxsinbxdx或∫eaxcosbxdx
2.定积分的计算
核心必看:
定积分由于有了积分区间,若积分区间是对称的,要考虑奇偶性,根据奇偶性化简被积函数。有些时候,需要我们手动的,制造对称区间,如利用换元法手动制造对称区间。并且定积分根据几何意义,还有简单的计算法。当然周期性也能用上
2.1 牛顿莱布尼茨公式
非常基本的公式
∫ a b f ( x ) d x = F ( b ) − F ( a ) \int_{a}^{b} f(x) \, dx = F(b) - F(a) ∫abf(x)dx=F(b)−F(a).
2.2 定积分的换元法(整体换元,敌退我进)
该部分很重要,是积分学的一个关键点
2.3 定积分的分布积分法
跟不定积分类似,这里想补充一点,关于被积函数含有对数/反三角函数,用分部积分时,要将被积函数全部拿到后面凑微分
2.4 积分区间再现公式
积分区间再现公式,适用于抽象的题目,即给出的是f(x)那种形式的,通过奇偶性,周期性等等性质搭配积分区间再现公式做题
设f(x)为连续函数
下面的这条公式,是积分区间公式的一种理解性记忆的手段,实际上,积分区间再现公式,不是这么直接用的,它实际上应当是f(x)和f(a+b-x)之间存在关系,加和*1/2来用。
∫ a b f ( x ) d x = ∫ a b f ( a + b − x ) d x \int \limits_{a}^{b}f\left(x\right)dx = \int \limits_{a}^{b}f\left(a + b - x\right)dx a∫bf(x)dx=a∫bf(a+b−x)dx
实际上的使用
1
2
∫
a
b
[
f
(
x
)
d
x
+
f
(
a
+
b
−
x
)
]
d
x
=
∫
a
b
f
(
x
)
d
x
\frac{1}{2}\int \limits_{a}^{b}\left[f\left(x\right)dx + f\left(a + b−x\right)\right]dx = \int \limits_{a}^{b}f\left(x\right)dx
21a∫b[f(x)dx+f(a+b−x)]dx=a∫bf(x)dx
2.5 定积分的几何意义计算【结合图像】
2.6 定积分计算的一些公式结论
2.6.1 点火公式
2.6.2 定积分的几何意义相关
理解下面的例子,公式是不用记忆的,本质就是利用圆的几何意义,解决一些定积分的计算问题
2.6.3 关于三角函数的定积分计算结论
题目特征∫0到派,存在三角函数,xf(sinx)
对于2.2.7小节而言,结论是一种手段不是必要的,看重难点题型总结的4.2,将会用两种方法来进行题目的计算。
有关三角函数的积分计算题
考虑三角函数基本公式,如倍角公式,化简代求积分
3.反常积分的计算
跟常规定积分计算的区别是要考虑瑕点(∞和不存在的点),在计算过程中要考虑极限计算。保证定积分形式能计算极限。
在计算反常积分的过程中,使用分布积分时,要考虑是否能计算极限。
笨方法是统一算完不定积分后代入。
聪明的方法是在计算的过程中通过±常数,凑成能够算极限的形式,或者在分部前就化好形式。
典型题目为 660第69题
4.变上限定积分的计算
注意(x-t)xt等要换元
5.重难点题型总结
5.1 不定积分计算问题-对谁求导-对谁积分
这是一道经典的问题,
常见的误区1.是直接把等号左边变成f(ex)
常见的误区2,求导多✖️了一个ex
综上所述,弄明白对谁求导对谁积分很关键,比如等式左边只有dex,时误区1才成立
两边同时对x求导,积分符号+dx就抵消了求导的影响,这不是复合求导。
5.2 三角函数0到派上x*f(三角函数)形式的定积分(把握正负号)
题目来源:660第187题
该问题,存在一个坑是根号内的元素开根号,要考虑它的正负号,由于该问题涉及三角函数,故应该考虑采用减小区间的方式,进行保证三角函数的正负,进而保证符号的正负,从容的开根号。
这是第一步思考,常见的操作是构造对称区间,看看能不能利用奇偶性,进行进一步的缩小区间。