高等数学 第八讲 积分学计算_不定积分_定积分_反常积分的计算

高等数学 第八讲 积分学计算

1.不定积分的计算

1.1 基本积分公式

基本中的基本,熟练掌握,肌肉记忆
在这里插入图片描述

1.2 不定积分的计算方法

1.2.1 凑微分法

dx配凑成d[]的形式,让整体可以使用基本积分公式

1.2.2 换元法

核心思想:当被积函数不容易积分,但是能够求导,采用换元法这种思想,比如含有根式或反三角函数时,可以通过换元法的思想,将d后面的东西,拿出来一部分到前面来。

1.根式相关:
在这里插入图片描述

2️⃣的情况中,可以再变为1之后,令1中x的位置为t,如张宇基础172页例9.15

2.反三角函数相关:
像反三角函数这种的,被积函数中含有ax,ex,lnx,arcsinx,arctanx等时,令复杂函数=t

3.倒代换
当被积函数分母的的幂次比分子高两次及以上时,作倒代换,令x=1/t

1.2.3 分布积分法

∫udv比较困难,∫vdu比较简单

∫udv=uv-∫vdu

1.2.4 有理函数的积分计算(待更新)

1.2.5 不定积分的一些计算结论总结

结论1:形如∫eaxsinbxdx或∫eaxcosbxdx
在这里插入图片描述

2.定积分的计算

核心必看:

定积分由于有了积分区间,若积分区间是对称的,要考虑奇偶性,根据奇偶性化简被积函数。有些时候,需要我们手动的,制造对称区间,如利用换元法手动制造对称区间。并且定积分根据几何意义,还有简单的计算法。当然周期性也能用上

2.1 牛顿莱布尼茨公式

非常基本的公式

∫ a b f ( x )   d x = F ( b ) − F ( a ) \int_{a}^{b} f(x) \, dx = F(b) - F(a) abf(x)dx=F(b)F(a).

2.2 定积分的换元法(整体换元,敌退我进)

该部分很重要,是积分学的一个关键点

在这里插入图片描述

2.3 定积分的分布积分法

跟不定积分类似,这里想补充一点,关于被积函数含有对数/反三角函数,用分部积分时,要将被积函数全部拿到后面凑微分
在这里插入图片描述

2.4 积分区间再现公式

积分区间再现公式,适用于抽象的题目,即给出的是f(x)那种形式的,通过奇偶性,周期性等等性质搭配积分区间再现公式做题

设f(x)为连续函数

下面的这条公式,是积分区间公式的一种理解性记忆的手段,实际上,积分区间再现公式,不是这么直接用的,它实际上应当是f(x)和f(a+b-x)之间存在关系,加和*1/2来用。

∫ a b f ( x ) d x = ∫ a b f ( a + b − x ) d x \int \limits_{a}^{b}f\left(x\right)dx = \int \limits_{a}^{b}f\left(a + b - x\right)dx abf(x)dx=abf(a+bx)dx

实际上的使用
1 2 ∫ a b [ f ( x ) d x + f ( a + b − x ) ] d x = ∫ a b f ( x ) d x \frac{1}{2}\int \limits_{a}^{b}\left[f\left(x\right)dx + f\left(a + b−x\right)\right]dx = \int \limits_{a}^{b}f\left(x\right)dx 21ab[f(x)dx+f(a+bx)]dx=abf(x)dx

2.5 定积分的几何意义计算【结合图像】

在这里插入图片描述

2.6 定积分计算的一些公式结论

2.6.1 点火公式

在这里插入图片描述

2.6.2 定积分的几何意义相关

理解下面的例子,公式是不用记忆的,本质就是利用圆的几何意义,解决一些定积分的计算问题

在这里插入图片描述

2.6.3 关于三角函数的定积分计算结论

题目特征∫0到派,存在三角函数,xf(sinx)
在这里插入图片描述
对于2.2.7小节而言,结论是一种手段不是必要的,看重难点题型总结的4.2,将会用两种方法来进行题目的计算。

有关三角函数的积分计算题

考虑三角函数基本公式,如倍角公式,化简代求积分

3.反常积分的计算

跟常规定积分计算的区别是要考虑瑕点(∞和不存在的点),在计算过程中要考虑极限计算。保证定积分形式能计算极限。

在计算反常积分的过程中,使用分布积分时,要考虑是否能计算极限。
笨方法是统一算完不定积分后代入。
聪明的方法是在计算的过程中通过±常数,凑成能够算极限的形式,或者在分部前就化好形式。

典型题目为 660第69题

4.变上限定积分的计算

注意(x-t)xt等要换元

在这里插入图片描述

5.重难点题型总结

5.1 不定积分计算问题-对谁求导-对谁积分

这是一道经典的问题,
常见的误区1.是直接把等号左边变成f(ex)
常见的误区2,求导多✖️了一个ex
综上所述,弄明白对谁求导对谁积分很关键,比如等式左边只有dex,时误区1才成立
两边同时对x求导,积分符号+dx就抵消了求导的影响,这不是复合求导。

在这里插入图片描述

5.2 三角函数0到派上x*f(三角函数)形式的定积分(把握正负号)

题目来源:660第187题
该问题,存在一个坑是根号内的元素开根号,要考虑它的正负号,由于该问题涉及三角函数,故应该考虑采用减小区间的方式,进行保证三角函数的正负,进而保证符号的正负,从容的开根号。
这是第一步思考,常见的操作是构造对称区间,看看能不能利用奇偶性,进行进一步的缩小区间。

在这里插入图片描述

5.3 【纯计算】三种方法解决ln(式子/式子)的形式

在这里插入图片描述

评论 11
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小徐要考研

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值