反常积分复习

反常积分

此为鄙人考研数学复习的书本知识部分总结和思考,如有错误,还望读者能不惜笔墨不啬赐教,感激不尽!


在黎曼积分讨论中存在两个最基本的限制

  1. 积分区域的有穷性
  2. 被积函数的有界性

因而此处讨论的反常积分不在黎曼可积的体系下,属于广义可积的范畴



一、反常积分概念

1. 两类反常积分的定义

无穷积分

Def 1:设函数 f f f 为定义在无穷区间 [ a , + ∞ ) [a,+\infty) [a,+) 上,且在任意有限区间 [ a , u ] [a,u] [a,u] 上都可积,如果存在极限 lim ⁡ u → ∞ ∫ a u f ( x )   d x = J \lim\limits_{u\to \infty}\int_a^u f(x)\ \mathrm{d}x=J ulimauf(x) dx=J ,那么称此极限为函数 f f f 在无穷区间上的无穷限反常积分,简称无穷积分,记作 J = ∫ a + ∞ f   d x J=\int_a^{+\infty}f\ \mathrm{d}x J=a+f dx ,并成该无穷积分收敛,为方便起见,若无穷积分不收敛,则称其发散

那么类似地,可以得到在负无穷区间上的定义,基于此,我们可以对 ( − ∞ , + ∞ ) (-\infty,+\infty) (,+) 上的无穷积分进行定义

∫ − ∞ + ∞ f   d x = ∫ − ∞ a f   d x   +   ∫ a + ∞ f   d x \int_{-\infty}^{+\infty}f\ \mathrm{d}x=\int_{-\infty}^af\ \mathrm{d}x\ +\ \int_a^{+\infty}f\ \mathrm{d}x +f dx=af dx + a+f dx

其中 a a a 为任一实数,那么当且仅当右边两个无穷积分都是收敛的时候,才称它是收敛的!


几点说明

  1. ( − ∞ , + ∞ ) (-\infty, +\infty) (,+) 上的无穷积分收敛性与收敛时的值与 a a a 的选取无关
  2. ( − ∞ , + ∞ ) (-\infty, +\infty) (,+) 上的无穷积分要求 f f f 在任何有限区间 [ u , v ] ⊂ ( − ∞ , + ∞ ) [u,v]\subset (-\infty, +\infty) [u,v](,+) 上首先是可积的
  3. ∫ a + ∞ f   d x \int_a^{+\infty}f\ \mathrm{d}x a+f dx 收敛的几何意义是:若 f f f [ a , + ∞ ) [a,+\infty) [a,+) 上为连续函数,曲线 y = f ( x ) y=f(x) y=f(x) 介于直线 x = a x=a x=a 以及 x x x 轴之间那一块向右无线延申的区域面积存在

!!! 需记忆的无穷积分

∫ 1 u d x x p = { 1 1 − p , p > 1 + ∞ , p ≤ 1 \int_1^u \frac{\mathrm{d}x}{x^p}= \begin{equation} \left\{ \begin{array}{lr} &\frac1{1-p},\quad p>1 \\ &+\infty,\quad p\le1 \end{array} \right. \end{equation} 1uxpdx={1p1,p>1+,p1

因此 p p p 做幂的无穷积分在 p ∈ ( 1 , + ∞ ) p\in(1,+\infty) p(1,+) 上收敛



瑕积分

Def 2:设函数 f f f 为定义在区间 ( a , b ] (a,b] (a,b] 上,若在 a a a 点任一右邻域上无界,但在任何区间 [ u , b ] ⊂ ( a , b ] [u,b]\subset(a,b] [u,b](a,b]有界且可积,如果极限 lim ⁡ u → a + ∫ u b f ( x )   d x = J \lim\limits_{u\to a^+}\int_u^bf(x)\ \mathrm{d}x=J ua+limubf(x) dx=J 存在,那么称此极限为无界函数 f f f ( a , b ] (a,b] (a,b] 上的反常积分,记作 J = ∫ a b f ( x )   d x J=\int_a^b f(x)\ \mathrm{d}x J=abf(x) dx ,并称反常积分收敛,同样地,方便起见,当该类型反常积分不收敛时,我们也叫他发散

由于在 Def 2 中被积函数 f f f 在点 a a a 近旁是无界的,此时点 a a a 我们称作 f f f瑕点,而无界函数反常积分 ∫ a b f ( x )   d x \int_a^bf(x)\ \mathrm{d}x abf(x) dx 称为瑕积分

类似地,可以定义瑕点为 b b b 的瑕积分,基于此,若 f f f 的瑕点 c ∈ ( a , b ) c\in(a,b) c(a,b) ,则定义瑕积分

∫ a b f ( x )   d x = ∫ a c f ( x )   d x + ∫ c b f ( x )   d x \int_a^bf(x)\ \mathrm{d}x=\int_a^cf(x)\ \mathrm{d}x+\int_c^bf(x)\ \mathrm{d}x abf(x) dx=acf(x) dx+cbf(x) dx

其中 f f f [ a , c ) [a,c) [a,c) ( c , b ] (c,b] (c,b] 上有定义,在点 c c c 的任一领域上都无界,但在任何 [ a , u ] ⊂ [ a , c ) [a,u]\subset[a,c) [a,u][a,c) [ v , b ] ⊂ ( c , b ] [v,b]\subset(c,b] [v,b](c,b] 上都是可积的,那么当且仅当右边两个瑕积分都收敛时,左边的瑕积分才收敛!

!!! 需记忆的瑕积分

∫ 0 1 d x x p = { 1 1 − p , p < 1 + ∞ , p ≥ 1 \int_0^1 \frac{\mathrm{d}x}{x^p}= \begin{equation} \left\{ \begin{array}{lr} &\frac1{1-p},\quad p<1 \\ &+\infty,\quad p\ge1 \end{array} \right. \end{equation} 01xpdx={1p1,p<1+,p1

因此 p p p 做幂的瑕积分积分在 p ∈ ( 0 , 1 ) p\in(0,1) p(0,1) 上收敛



二、无穷积分的性质与审敛

1. 无穷积分的性质

收敛的充要条件:任给 ε > 0 \varepsilon>0 ε>0 存在 G ≥ a G\ge a Ga ,只要 u 1 , u 2 > G u_1,u_2>G u1,u2>G 都有 ∣ ∫ a u 2 f ( x )   d x − ∫ a u 1 f ( x ) d x ∣ = ∣ ∫ u 1 u 2 f ( x )   d x ∣ < ε |\int_a^{u_2}f(x)\ \mathrm{d}x- \int_a^{u_1}f(x)\mathrm{d}x|=|\int_{u_1}^{u_2}f(x)\ \mathrm{d}x|<\varepsilon au2f(x) dxau1f(x)dx=u1u2f(x) dx<ε


一些性质:

  1. 线性性质两个同区间收敛的无穷积分线性组合后的无穷积分还是收敛的
  2. f f f 在任何有限区间 [ a , b ] [a,b] [a,b] 上可积, a < b a<b a<b ,则 ∫ a + ∞ f ( x )   d x \int_a^{+\infty}f(x)\ \mathrm{d}x a+f(x) dx ∫ b + ∞ f ( x )   d x \int_b^{+\infty}f(x)\ \mathrm{d}x b+f(x) dx 同敛态
  3. ∫ a + ∞ f d x \int_a^{+\infty} f\mathrm{d}x a+fdx ∫ a + ∞ g   d x \int_a^{+\infty}g\ \mathrm{d}x a+g dx 都收敛,且 f ≤ g f \le g fg x ∈ [ a , + ∞ ) x\in [a,+\infty) x[a,+) ,则有 ∫ a + ∞ f   d x ≤ ∫ a + ∞ g   d x \int_a^{+\infty}f\ \mathrm{d}x \le \int_a^{+\infty}g\ \mathrm{d}x a+f dxa+g dx (根据极限的定义以及保不等号性容易证明)
  4. f f f 在任何有限区间 [ a , u ] [a,u] [a,u] 上可积,且有 ∫ a + ∞ ∣ f ( x ) ∣   d x \int_a^{+\infty}|f(x)|\ \mathrm{d}x a+f(x) dx 收敛,则 ∫ a + ∞ f ( x ) d x \int_a^{+\infty}f(x)\mathrm{d}x a+f(x)dx 亦必收敛,且有 ∣ ∫ a + ∞ f   d x ∣ ≤ ∫ a + ∞ ∣ f ∣   d x |\int_a^{+\infty}f\ \mathrm{d}x |\le \int_a^{+\infty}|f|\ \mathrm{d}x a+f dxa+f dx , 注意,当 ∫ a + ∞ f d x \int_a^{+\infty}f\mathrm{d}x a+fdx 收敛时,我们称该无穷积分绝对收敛,性质4指出,绝对收敛的无穷积分其本身亦收敛,但逆命题不一定成立,此时我们称收敛而不绝对收敛的积分为条件收敛

2. 非负无穷积分的审敛法

i. 比较原则

设定义在 [ a , + ∞ ) [a,+\infty) [a,+) 上的两个非负函数 f f f g g g 都在任何有限区间 [ a , u ] [a,u] [a,u] 上可积,且满足 f ≤ g f\le g fg ,则

  • g g g 的无穷积分收敛时, f f f 的无穷积分一定收敛
  • f f f 的无穷积分发散时, g g g 的无穷积分一定发散

ii. 极限形式下的比较原则

f f f g g g 都在任何有限区间 [ a , u ] [a,u] [a,u] 上可积,当 x ∈ [ a , + ∞ ) x\in[a,+\infty) x[a,+) 可积, f ≥ 0 f\ge0 f0 g > 0 g>0 g>0 且有 lim ⁡ x → + ∞ f ( x ) g ( x ) = c \lim\limits_{x\to +\infty}\frac {f(x)}{g(x)}=c x+limg(x)f(x)=c ,则

  • 0 < c < + ∞ 0<c<+\infty 0<c<+ 时,两无穷积分同敛态
  • c = 0 c=0 c=0 f f f 无穷积分收敛 ⇒ \Rightarrow g g g 无穷积分收敛
  • c = + ∞ c=+\infty c=+ f f f 无穷积分发散 ⇒ \Rightarrow g g g 无穷积分发散

iii.柯西判别法

当选用 ∫ 1 + ∞ d x x p \int_1^{+\infty}\frac{\mathrm{d}x}{x^p} 1+xpdx 为比较对象

  • 0 ≤ f ≤ 1 x p , p > 1 0\le f\le \frac1{x^p},p>1 0fxp1p>1 f f f 无穷积分收敛
  • f ≥ 1 x p , p ≤ 1 f \ge \frac1{x^p},p\le1 fxp1p1 f f f 无穷积分发散

推论:设 f f f 是定义于 [ a , + ∞ ) [a,+\infty) [a,+) 上的非负函数,在任何有限区间 [ a , u ] [a,u] [a,u] 上可积,且有 lim ⁡ x → + ∞ x p f ( x ) = λ \lim\limits_{x\to +\infty}x^pf(x)=\lambda x+limxpf(x)=λ

  • p > 1 ,   0 ≤ λ < + ∞ p>1,\ 0\le \lambda<+\infty p>1, 0λ<+ f f f 无穷积分收敛
  • p ≤ 1 ,   0 < λ ≤ + ∞ p \le 1,\ 0<\lambda\le +\infty p1, 0<λ+ f f f 无穷积分发散

3. 一般无穷积分的审敛

  • (狄利克雷判别法):若 F ( u ) = ∫ a u f ( x )   d x F(u)=\int_a^uf(x)\ \mathrm{d}x F(u)=auf(x) dx [ a , + ∞ ) [a,+\infty) [a,+) 上有界, g g g [ a , + ∞ ) [a,+\infty) [a,+) 上当 x → + ∞ x\to +\infty x+ 时单调趋于0,则 ∫ a + ∞ f ⋅ g   d x \int_a^{+\infty}f\cdot g\ \mathrm{d}x a+fg dx 收敛
  • (阿贝尔判别法):若 ∫ a + ∞ f   d x \int_a^{+\infty}f\ \mathrm{d}x a+f dx 收敛, g g g [ a , + ∞ ) [a,+\infty) [a,+) 上单调有界,则 ∫ a + ∞ f ⋅ g   d x \int_a^{+\infty}f\cdot g\ \mathrm{d}x a+fg dx 收敛

三、瑕积分的性质与审敛

类似于无穷积分的柯西收敛准则以及后续的一些性质,我们可以类似地给出瑕积分的相应命题


1. 瑕积分的性质

收敛的充要条件:任给 ε > 0 \varepsilon>0 ε>0 , 存在 δ > 0 \delta>0 δ>0 只要 u 1 ,   u 2 ∈ ( a , a + δ ) u_1,\ u_2\in(a,a+\delta) u1, u2(a,a+δ) 总有 ∣ ∫ u 1 b f ( x ) d x − ∫ u 2 b f ( x )   d x ∣ = ∣ ∫ u 1 u 2 f ( x )   d x ∣ < ε |\int_{u_1}^bf(x)\mathrm{d}x-\int_{u_2}^bf(x)\ \mathrm{d}x|=|\int_{u_1}^{u_2}f(x)\ \mathrm{d}x|<\varepsilon u1bf(x)dxu2bf(x) dx=u1u2f(x) dx<ε

一些性质:

  1. 设函数 f 1 ,   f 2 f_1,\ f_2 f1, f2 瑕点相同都为 a a a ,则若两瑕积分收敛,其线性组合依然收敛
  2. 若函数 f f f 瑕点为 a a a c ∈ ( a , b ) c\in(a,b) c(a,b) 为任一常数,则瑕积分 ∫ a b f d x \int_a^bf\mathrm{d}x abfdx ∫ a c f d x \int_a^cf\mathrm{d}x acfdx 同敛态
  3. 设函数 f f f g g g 有相同瑕点 a a a ,若 ∫ a b f d x \int_a^bf\mathrm{d}x abfdx ∫ a b g d x \int_a^bg\mathrm{d}x abgdx 都收敛且 f ≤ g f\le g fg ,那么有 ∫ a b f − g   d x ≥ 0 \int_a^bf-g\ \mathrm{d}x\ge 0 abfg dx0
  4. 设函数 f f f 瑕点为 a a a f f f ( a , b ] (a,b] (a,b] 内的任一闭区间 [ u , b ] [u,b] [u,b] 上可积,当 ∫ a b ∣ f ∣   d x \int_a^b|f|\ \mathrm{d}x abf dx 收敛时, ∫ a b f   d x \int_a^bf\ \mathrm{d}x abf dx 也收敛,且有 ∣ ∫ a b f   d x ∣ ≤ ∫ a b ∣ f ∣   d x |\int_a^bf\ \mathrm{d}x| \le \int_a^b|f|\ \mathrm{d}x abf dxabf dx ,同样地,当 ∣ f ∣ |f| f 的瑕积分收敛时,我们称 f f f 绝对收敛,又称收敛但不绝对收敛的瑕积分是条件收敛

2. 非负瑕积分审敛

i. 比较原则

设定义在 ( a , b ] (a,b] (a,b] 上的两个函数 f f f g g g 瑕点同为 x = a x=a x=a ,在任何 [ u , b ] ⊂ ( a , b ] [u,b] \subset (a,b] [u,b](a,b] 上都可积,且满足 0 ≤ f ≤ g , x ∈ ( a , b ] 0 \le f \le g,x\in (a,b] 0fgx(a,b] ,则

  • ∫ a b g   d x \int_a^bg\ \mathrm{d}x abg dx 收敛时, ∫ a b f   d x \int_a^b f\ \mathrm{d}x abf dx 必定收敛
  • ∫ a b f   d x \int_a^b f\ \mathrm{d}x abf dx 发散时, ∫ a b g   d x \int_a^bg\ \mathrm{d}x abg dx 必定发散

ii. 极限形式下的比较原则

基于比较原则的定义,若有 f ≥ 0 , g > 0 f\ge 0,g > 0 f0g>0 lim ⁡ x → a + f g = c \lim\limits_{x\to a^+}\frac{f}{g}=c xa+limgf=c ,则

  • 当$0<c<+\infty $ 时, ∫ a b f   d x \int_a^bf\ \mathrm{d}x abf dx ∫ a b g   d x \int_a^bg\ \mathrm{d}x abg dx 同敛态
  • c = 0 c=0 c=0 时,由 ∫ a b g   d x \int_a^b g\ \mathrm{d}x abg dx 收敛 ⇒ \Rightarrow ∫ a b f   d x \int_a^bf\ \mathrm{d}x abf dx 收敛
  • c = + ∞ c=+\infty c=+ 时,由 ∫ a b f   d x \int_a^bf\ \mathrm{d}x abf dx 发散 ⇒ \Rightarrow ∫ a b g   d x \int_a^bg\ \mathrm{d}x abg dx 发散

iii. 柯西判别法

当选用 ∫ a b d x ( x − a ) p \int_a^b\frac{\mathrm{d}x}{(x-a)^p} ab(xa)pdx 为比较对象

  • 0 ≤ f ≤ 1 ( x − a ) p 0\le f \le \frac1{(x-a)^p} 0f(xa)p1 0 < p < 1 0<p<1 0<p<1 时, ∫ a b f ( x ) d x \int_a^bf(x)\mathrm{d}x abf(x)dx 收敛
  • f ≥ 1 ( x − a ) p f\ge \frac1{(x-a)^p} f(xa)p1 p ≥ 1 p\ge 1 p1 时, ∫ a b f   d x \int_a^bf\ \mathrm{d}x abf dx 发散

推论:设 f f f 是定义于 ( a , b ] (a,b] (a,b] 上的非负函数, a a a 为其瑕点,且在任何 [ u , b ] ⊂ ( a , b ] [u,b]\subset(a,b] [u,b](a,b] 上可积,若 lim ⁡ x → a + ( x − a ) p f ( x ) = λ \lim\limits_{x\to a^+}(x-a)^pf(x)=\lambda xa+lim(xa)pf(x)=λ ,则

  • 0 < p < 1 , 0 ≤ λ < + ∞ 0 < p < 1,0\le \lambda<+\infty 0<p<10λ<+ 时, ∫ a b f ( x )   d x \int_a^bf(x)\ \mathrm{d}x abf(x) dx 收敛
  • p ≥ 1 , 0 < λ ≤ + ∞ p \ge 1,0< \lambda \le +\infty p10<λ+ 时, ∫ a b f ( x )   d x \int_a^bf(x)\ \mathrm{d}x abf(x) dx 发散

3. 一般瑕积分的审敛

  • (狄利克雷判别法):设 a a a f f f 的瑕点, F ( u ) = ∫ u b f ( x )   d x F(u)=\int_u^bf(x)\ \mathrm{d}x F(u)=ubf(x) dx ( a , b ] (a,b] (a,b] 上有界,函数 g g g ( a , b ] (a,b] (a,b] 上单调且 lim ⁡ x → a + g = 0 \lim\limits_{x\to a^+}g=0 xa+limg=0 ,则瑕积分 ∫ a b f ⋅ g   d x \int_a^bf\cdot g\ \mathrm{d}x abfg dx 收敛
  • (阿贝尔判别法):设 a a a f f f 的瑕点,瑕积分 ∫ a b f ( x )   d x \int_a^bf(x)\ \mathrm{d}x abf(x) dx 收敛,函数 g g g ( a , b ] (a,b] (a,b] 上单调有界,则瑕积分 ∫ a b f ⋅ g   d x \int_a^bf\cdot g\ \mathrm{d}x abfg dx 收敛
  • 3
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

szfmsmdx

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值