FSDP(Fully Sharded Data Parallel)是一种在分布式训练中常用的技术,特别是在处理非常大规模的深度学习模型时。它属于 PyTorch 中的分布式训练技术之一,旨在通过将模型参数拆分并分配到不同的设备上,以减少显存使用并提高计算效率。
FSDP 的核心思想:
-
完全分片(Fully Sharded):
- 在传统的分布式训练中,每个设备存储和更新所有模型的参数(如权重)。而在 FSDP 中,模型的参数被“分片”到多个设备上,每个设备只存储自己需要的部分参数。这样每个设备的显存消耗会更少,允许训练更大的模型。
-
数据并行:
- 类似于数据并行,FSDP 会在多个设备之间复制模型的计算和数据分配。每个设备会计算不同数据的梯度,然后进行同步(通常是通过 All-Reduce 技术)以确保每个设备的参数一致。
-
减少显存消耗:
- 由于每个设备只存储部分参数和梯度,FSDP 可以显著减少每个设备的显存占用,使得能够训练更大的模型。
-
梯度计算和更新:
- 每个设备计算自己的梯度,并在同步后更新其本地模型参数。FSDP 会在每次梯度更新时将不同设备的梯度进行合并。
FSDP 的优势:
-
显存效率:
- 由于每个设备只存储模型的一部分,它减少了内存使用,允许训练比单台设备显存更多的模型。
-
支持大规模训练:
- 对于非常大的神经网络(比如大型语言模型或图像生成模型),传统的模型训练方法可能因为显存限制而无法进行,而 FSDP 可以帮助解决这一问题。
-
加速训练:
- 通过分布式训练,FSDP 可以在多台机器或者多张 GPU 上并行训练,大大加速训练过程。
FSDP 的使用场景:
FSDP 适用于以下场景:
- 大模型训练:当训练的模型非常大,以至于单个设备无法容纳时,FSDP 是一个合适的解决方案。
- 分布式训练:当你需要在多个 GPU 上训练模型时,FSDP 能够有效地分配参数并减少显存使用。
- 节省显存:对于显存较小的设备,FSDP 可以帮助分摊模型参数的存储需求,使得可以训练大模型。
FSDP 的代码示例:
import torch
import torch.distributed as dist
from torch.distributed.fsdp import FullyShardedDataParallel as FSDP
from torch import nn
# 假设一个简单的模型
class MyModel(nn.Module):
def __init__(self):
super(MyModel, self).__init__()
self.linear = nn.Linear(10, 10)
def forward(self, x):
return self.linear(x)
# 初始化分布式环境
dist.init_process_group(backend='nccl')
# 创建模型并包裹在 FSDP 中
model = MyModel().to(device)
fsdp_model = FSDP(model)
# 定义优化器和损失函数
optimizer = torch.optim.Adam(fsdp_model.parameters())
criterion = nn.MSELoss()
# 训练过程
def train():
# 假设有一个数据加载器
for data, target in data_loader:
optimizer.zero_grad()
output = fsdp_model(data)
loss = criterion(output, target)
loss.backward()
optimizer.step()
在上述代码中,FullyShardedDataParallel
被用来包装模型 MyModel
,使其在分布式训练过程中能够分片存储参数。这样,多个 GPU 之间将共享训练任务,而每个 GPU 只负责存储和计算自己分片的参数。