FSDP(Fully Sharded Data Parallel)是一种在分布式训练中常用的技术,特别是在处理非常大规模的深度学习模型时

FSDP(Fully Sharded Data Parallel)是一种在分布式训练中常用的技术,特别是在处理非常大规模的深度学习模型时。它属于 PyTorch 中的分布式训练技术之一,旨在通过将模型参数拆分并分配到不同的设备上,以减少显存使用并提高计算效率。

FSDP 的核心思想:

  1. 完全分片(Fully Sharded)

    • 在传统的分布式训练中,每个设备存储和更新所有模型的参数(如权重)。而在 FSDP 中,模型的参数被“分片”到多个设备上,每个设备只存储自己需要的部分参数。这样每个设备的显存消耗会更少,允许训练更大的模型。
  2. 数据并行

    • 类似于数据并行,FSDP 会在多个设备之间复制模型的计算和数据分配。每个设备会计算不同数据的梯度,然后进行同步(通常是通过 All-Reduce 技术)以确保每个设备的参数一致。
  3. 减少显存消耗

    • 由于每个设备只存储部分参数和梯度,FSDP 可以显著减少每个设备的显存占用,使得能够训练更大的模型。
  4. 梯度计算和更新

    • 每个设备计算自己的梯度,并在同步后更新其本地模型参数。FSDP 会在每次梯度更新时将不同设备的梯度进行合并。

FSDP 的优势:

  • 显存效率

    • 由于每个设备只存储模型的一部分,它减少了内存使用,允许训练比单台设备显存更多的模型。
  • 支持大规模训练

    • 对于非常大的神经网络(比如大型语言模型或图像生成模型),传统的模型训练方法可能因为显存限制而无法进行,而 FSDP 可以帮助解决这一问题。
  • 加速训练

    • 通过分布式训练,FSDP 可以在多台机器或者多张 GPU 上并行训练,大大加速训练过程。

FSDP 的使用场景:

FSDP 适用于以下场景:

  • 大模型训练:当训练的模型非常大,以至于单个设备无法容纳时,FSDP 是一个合适的解决方案。
  • 分布式训练:当你需要在多个 GPU 上训练模型时,FSDP 能够有效地分配参数并减少显存使用。
  • 节省显存:对于显存较小的设备,FSDP 可以帮助分摊模型参数的存储需求,使得可以训练大模型。

FSDP 的代码示例:

import torch
import torch.distributed as dist
from torch.distributed.fsdp import FullyShardedDataParallel as FSDP
from torch import nn

# 假设一个简单的模型
class MyModel(nn.Module):
    def __init__(self):
        super(MyModel, self).__init__()
        self.linear = nn.Linear(10, 10)

    def forward(self, x):
        return self.linear(x)

# 初始化分布式环境
dist.init_process_group(backend='nccl')

# 创建模型并包裹在 FSDP 中
model = MyModel().to(device)
fsdp_model = FSDP(model)

# 定义优化器和损失函数
optimizer = torch.optim.Adam(fsdp_model.parameters())
criterion = nn.MSELoss()

# 训练过程
def train():
    # 假设有一个数据加载器
    for data, target in data_loader:
        optimizer.zero_grad()
        output = fsdp_model(data)
        loss = criterion(output, target)
        loss.backward()
        optimizer.step()

在上述代码中,FullyShardedDataParallel 被用来包装模型 MyModel,使其在分布式训练过程中能够分片存储参数。这样,多个 GPU 之间将共享训练任务,而每个 GPU 只负责存储和计算自己分片的参数。

一、目的1. 加速训练过程2. 适应大规模数据3. 资源利用率高4. 提升训练速度5. 增大系统容量6. 提高系统可用性7. 加速模型迭代二、 LLaMA-Factory1.安装2. LLaMA-Factory 校验三、 训练引擎1.DDP2. DeepSpeed3.FSDP四、WebUI五. 参数配置1. 模型2. 数据3. 训练参数4. 多卡参数1. ZeRO-12. ZeRO-23. ZeRO-3六、训练七、推理八、XTuner一、目的分布式训练一种在多个计算节点上共同完成机器学习模型训练任务的过程,它可以充分利用多台计算机的资源,提高训练效率和模型准确性。分布式训练的主要优势包括:1. 加速训练过程通过并行计算,分布式训练大幅缩短了训练间,提高了训练效率。提高模型准确性:利用更多的计算资源和数据样本进行训练,减少了过拟合风险,提高了模型的泛化能力和准确性。2. 适应大规模数据分布式训练能够处理传统单机训练难以应对的大规模数据集。3. 资源利用率高有效利用了计算资源,避免了单机训练的资源闲置和浪费。4. 提升训练速度通过并行计算,分布式训练能够显著缩短模型训练间,尤其是在处理大规模数据集和复杂模型效果更为明显。5. 增大系统容量随着业务量的增长,单机性能已无法满足需求。分布式训练通过多台计算设备的协同工作,能够应对更大规模的应用场景。6. 提高系统可用性分布式架构能够消除单点故障,提高系统的整体可用性。即使某个计算设备出现故障,也不会影响整个训练任务的进行。7. 加速模型迭代在快速迭代的机器学习项目中,分布式训练能够更快地完成模型训练,从而加速模型迭代和优化过程。总的来说,分布式训练深度学习领域提高训练效率和加快模型收敛的重要手段 。二、 LLaMA-Factory1.安装在安装 LLaMA-Factory 之前,请确保您安装了下列依赖:运行以下指令以安装 LLaMA-Factory 及其依赖:git clone --depth 1 https://github.com/hiyouga/LLaMA-Factory.gitcd LLaMA-Factorypip install -e ".[torch,metrics]"123如果出现环境冲突,请尝试使用 pip install --no-deps -e . 解决2. LLaMA-Factory 校验完成安装后,可以通过使用 llamafactory-cli version 来快速校验安装是否成功如果看到类似下面的界面,就说明安装成功了。 Successfully uninstalled requests-2.31.0 Attempting uninstall: anyio Found existing installation: anyio 4.4.0 Uninstalling anyio-4.4.0: Successfully uninstalled anyio-4.4.0Successfully installed accelerate-1.2.1 aiofiles-23.2.1 aiohappyeyeballs-2.4.6 aiohttp-3.11.12 aiosignal-1.3.2 annotated-types-0.7.0 anyio-4.8.0 audioread-3.0.1 av-14.1.0 click-8.1.8 datasets-3.2.0 dill-0.3.8 docstring-parser-0.16 einops-0.8.1 fastapi-0.115.8 ffmpy-0.5.0 fire-0.7.0 frozenlist-1.5.0 gradio-5.12.0 gradio-client-1.5.4 huggingface-hub-0.28.1 jieba-0.42.1 joblib-1.4.2 lazy-loader-0.4 librosa-0.10.2.post1 llamafactory-0.9.2.dev0 llvmlite-0.44.0 markdown-it-py-3.0.0 mdurl-0.1.2 msgpack-1.1.0 multidict-6.1.0 multiprocess-0.70.16 nltk-3.9.1 numba-0.61.0 orjson-3.10.15 pandas-2.2.3 peft-0.12.0 pooch-1.8.2 propcache-0.2.1 pyarrow-19.0.0 pydantic-2.10.6 pydantic-core-2.27.2 pydub-0.25.1 python-multipart-0.0.20 pytz-2025.1 regex-2024.11.6 requests-2.32.3 rich-13.9.4 rouge-chinese-1.0.3 ruff-0.9.6 safehttpx-0.1.6 safetensors-0.5.2 scikit-learn-1.6.1 scipy-1.15.1 semantic-version-2.10.0 sentencepiece-0.2.0 shellingham-1.5.4 shtab-1.7.1 soundfile-0.13.1 soxr-0.5.0.post1 sse-starlette-2.2.1 starlette-0.45.3 termcolor-2.5.0 threadpoolctl-3.5.0 tiktoken-0.9.0 tokenizers-0.21.0 tomlkit-0.13.2 tqdm-4.67.1 transformers-4.48.3 trl-0.9.6 typer-0.15.1 typing-extensions-4.12.2 tyro-0.8.14 tzdata-2025.1 uvicorn-0.34.0 websockets-14.2 xxhash-3.5.0 yarl-1.18.3WARNING: Running pip as the 'root' user can result in broken permissions and conflicting behaviour with the system package manager. It is recommended to use a virtual environment instead: https://pip.pypa.io/warnings/venvroot@autodl-container-c2d74383d9-db8bb7c4:~/autodl-tmp/LLaMA-Factory# llamafactory-cli version----------------------------------------------------------| Welcome to LLaMA Factory, version 0.9.2.dev0 || || Project page: https://github.com/hiyouga/LLaMA-Factory |----------------------------------------------------------root@autodl-container-c2d74383d9-db8bb7c4:~/autodl-tmp/LLaMA-Factory# 1234567891011121314三、 训练引擎LLaMA-Factory 支持单机多卡和多机多卡分布式训练。同也支持 DDP , DeepSpeed 和 FSDP 三种分布式引擎。1.DDPDDP (DistributedDataParallel) 通过实现模型并行和数据并行实现训练加速。 使用 DDP 的程序需要生成多个进程并且为每个进程创建一个 DDP 实例,他们之间通过 torch.distributed 库同步。2. DeepSpeedDeepSpeed 是微软开发的分布式训练引擎,并提供ZeRO(Zero Redundancy Optimizer)、offload、Sparse Attention、1 bit Adam、流水线并行等优化技术。 您可以根据任务需求与设备选择使用。3.FSDP通过全切片数据并行技术Fully Sharded Data Parallel)来处理更多更大的模型。在 DDP 中,每张 GPU 都各自保留了一份完整的模型参数和优化器参数。而 FSDP 切分了模型参数、梯度与优化器参数,使得每张 GPU 只保留这些参数的一部分。 除了并行技术之外,FSDP 还支持将模型参数卸载至CPU,从而进一步降低显存需求。由于deepseek分布式训练加速,采用混合精度(fp16/fp32)和ZeRO优化,减少显存占用,从而加速训练。所以本文采用DeepSpeed 是训练引擎。四、WebUILLaMA-Factory 支持通过 WebUI 零代码微调大语言模型。 在完成 安装 后,您可以通过以下指令进入 WebUI:llamafactory-cli webui1WebUI 主要分为四个界面:训练、评估与预测、对话、导出。当运行上面命令后,打开如下界面在开始训练模型之前,需要指定的参数有:模型名称及路径训练阶段微调方法训练数据集学习率、训练轮数等训练参数微调参数等其他参数输出目录及配置路径
03-20
### LLaMA-Factory 分布式训练引擎概述 LLaMA-Factory 是一个用于大语言模型微调的开源工具包,支持多种分布式训练引擎,包括 DDP (Distributed Data Parallel),DeepSpeed 和 FSDP (Fully Sharded Data Parallel)[^1]。这些引擎能够显著提升大规模模型训练效率。 #### 安装与环境准备 为了使用 LLaMA-Factory 及其分布式训练功能,需先完成 Python 虚拟环境搭建和依赖库安装。推荐使用 `conda` 或 `virtualenv` 创建独立环境,并运行以下命令: ```bash git clone https://github.com/hiyouga/LLaMA-Factory.git cd LLaMA-Factory pip install -r requirements.txt ``` 对于 GPU 集群的支持,确保已正确安装 CUDA 和 PyTorch 版本兼容驱动程序[^4]。 --- #### 校验流程 在正式开始训练前,建议验证硬件资源分配及通信状态正常。可以通过如下脚本测试集群连通性和性能指标: ```python import torch.distributed as dist from torch.nn.parallel import DistributedDataParallel as DDP def test_distributed_setup(): rank = int(os.environ["RANK"]) world_size = int(os.environ["WORLD_SIZE"]) dist.init_process_group(backend="nccl", init_method="env://") model = YourModel().to(rank) ddp_model = DDP(model, device_ids=[rank]) input_data = torch.randn((batch_size, feature_dim)).to(rank) output = ddp_model(input_data) test_distributed_setup() ``` 上述代码片段展示了如何初始化 NCCL 后端并创建基于 DDP 的模型实例[^2]。 --- #### 分布式训练引擎详解及其参数配置 ##### 1. **DDP** DDP 实现了数据并行机制,适合中小型规模模型训练场景。主要参数包括: - `find_unused_parameters`: 是否检测未使用的张量,默认关闭。 - `gradient_as_bucket_view`: 提升梯度计算内存利用率。 启动方式示例: ```bash torchrun --nproc_per_node=8 train.py \ --distributed-backend nccl \ --ddp-find-unused-params True ``` ##### 2. **DeepSpeed** DeepSpeed 提供更高级别的优化选项,特别是针对超大规模稀疏化需求的应用案例。它集成了 ZeRO 系列算法(ZeRO-Offload、ZeRO-Degree),可有效降低显存占用率。 典型配置文件 (`ds_config.json`) 如下所示: ```json { "fp16": { "enabled": true, "loss_scale": 0, "initial_scale_power": 32 }, "optimizer": { "type": "Adam", "params": { "lr": 0.0001, "betas": [0.9, 0.999], "eps": 1e-8, "weight_decay": 3e-7 } }, "zero_optimization": { "stage": 3, "offload_optimizer": {"device": "cpu"}, "overlap_comm": true } } ``` 加载 DeepSpeed 并执行训练过程的方法为: ```python from deepspeed import DeepSpeedConfig config_path = "./ds_config.json" model_engine, optimizer, _, _ = deepspeed.initialize( args=args, model=model, config=config_path ) for epoch in range(num_epochs): for batch in dataloader: loss = model_engine(batch) model_engine.backward(loss) model_engine.step() ``` ##### 3. **FSDP** 相比传统 DDP 方法,FSDP 更加注重完全分片策略下的高效性实现[^1]。以下是关键设置项: - `sharding_strategy`: 控制具体分片模式,例如 FULL_SHARD 表明整个网络会被均匀分割到各节点上。 - `mixed_precision_policy`: 自定义精度控制逻辑以平衡速度与质量之间的关系。 实际应用例子: ```python fsdp_model = FullyShardedDataParallel( module=model, sharding_strategy=FSDP.ShardingStrategy.FULL_SHARD, mixed_precision=MixedPrecision(param_dtype=torch.float16), cpu_offload=True ) ``` --- #### WebUI 微调支持 部分版本可能附带图形界面操作入口简化调试体验,不过官方文档并未特别强调此特性。如果需要定制化 UI 功能,则考虑引入第三方框架扩展能力。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值