金融序列的布朗运动

这篇博客介绍了金融衍生品定价系列的第一部分,主要聚焦于布朗运动和伊藤公式的概念及Python实现。通过回顾布朗运动的定义,即在每个极小时间段内的变化量服从正态分布且独立,文章为后续的BSM公式奠定了基础。作者提供了标准布朗运动的数学表达式,并展示如何用Python代码模拟这一过程。
摘要由CSDN通过智能技术生成

https://zhuanlan.zhihu.com/p/659164160

python金融衍生品定价系列之一 —— 布朗运动与伊藤公式

导语:网络上和书本上关于期权定价相关的内容已经较为丰富,但将理论和python代码结合起来讲的却很少,这也是python金融衍生品定价系列的写作初衷,在用python实现相关模型的同时,也尽力能解释清楚背后的基本原理(但不是严格的数学证明)。 作为衍生品定价系列的第一期,在讲解BSM公式之前,本篇简单回顾了布朗运动和伊藤公式的推导和python实现,为后续打下基础,希望对大家有所帮助,此外对文章中有问题或者有改进建议的还可以在评论区留言,非常感谢大家热烈讨论!

标准布朗运动

布朗运动也叫作维纳过程,简单理解就是每个极小的时刻内,其变化量的变动是随机的,服从正态分布,且任何两个不重叠的时间内,变化量之间是相互独立的(也就是无记忆性,具有马尔可夫性质),布朗运动虽然连续,处处不可微分。用数学公式来表示即:

𝑑𝑆=𝑑&#x

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值