ACL | 基于多任务指令微调的泛化增强代码漏洞检测

大家好,我是微信公众号【AI安全这点事】的小编,对AI和安全感兴趣的朋友,欢迎关注公众号,点赞推荐文章。

📌 背景

近年来,基于代码预训练模型(CodePTMs)的漏洞检测方法取得了显著进展,如 CodeBERT、GraphCodeBERT 和 UniXcoder 等。然而,这些模型在泛化能力方面存在较大局限性,主要原因是它们往往学习的是代码与标签之间的表面映射,而不是理解漏洞的根本原因。因此,在处理分布外(OOD)数据时,性能较差。

为了解决上述问题,本文提出了 VulLLM,一个结合多任务学习(Multi-Task Learning, MTL)和大型语言模型(LLMs)的新框架。该方法通过引入两个辅助任务——漏洞定位和漏洞解释,提高了漏洞检测的泛化能力和鲁棒性。


🎯 创新点

  1. 1. 引入多任务学习(MTL):在传统的漏洞检测任务基础上,引入漏洞定位和漏洞解释任务,增强模型对漏洞特征的理解。

  2. 2. 基于 GPT-4 生成漏洞解释:利用 GPT-4 生成漏洞解释数据,使 LLMs 更深入地理解漏洞的根本原因。

  3. 3. 采用 CoT-SV(Chain-of-Thought with Self-Verification)方法:通过自验证机制(Self-Verification)提高模型的推理能力,避免错误传播。

  4. <
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI安全这点事

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值