旋转矩阵 欧拉角 四元数

旋转矩阵、欧拉角和四元数是描述三维旋转的三种主要方法,各有其特点和应用场景。以下是它们的对比及转换关系的总结:

1. 旋转矩阵

  • 定义:3×3正交矩阵,行列式为1,表示线性变换。

  • 优点:

    • 直观表示坐标变换。

    • 可与其他变换(平移、缩放)组合为4×4齐次矩阵。

    • 无奇异性(无万向节锁)。

  • 缺点:

    • 冗余参数(9个参数,仅3自由度),需正交化维护。

    • 数值误差积累可能导致矩阵非正交。

  • 示例:

    • 绕Z轴旋转θ的矩阵:
      在这里插入图片描述

2. 欧拉角

  • 定义:三个角度(如yaw、pitch、roll),按特定顺序(如ZYX)绕轴旋转。

  • 优点:

    • 直观,易理解,适合用户输入。

    • 仅需3个参数,存储高效。

  • 缺点:

    • 万向节锁:当某轴旋转90°时丢失自由度。

    • 插值困难,旋转顺序影响结果。

  • 示例:

    • ZYX顺序:先绕Z轴(偏航),再绕Y轴(俯仰),最后绕X轴(翻滚)。

3. 四元数

  • 定义:超复数形式 q=w+xi+yj+zk,单位四元数表示旋转。

  • 优点:

    • 无万向节锁,插值平滑(如Slerp)。

    • 计算高效,组合旋转为四元数乘法。

    • 避免冗余和数值误差。

  • 缺点:

    • 不够直观,需维护单位长度。
  • 示例:

    • 绕单位轴 u 旋转θ的四元数:
      在这里插入图片描述

转换方法

欧拉角 ↔ 旋转矩阵

按欧拉角顺序(如ZYX)组合基本旋转矩阵:

在这里插入图片描述

分解矩阵元素求解角度时需注意奇异性(如俯仰角为±90°时)。

四元数 ↔ 旋转矩阵

四元数 q=(w,x,y,z) 对应矩阵:
在这里插入图片描述
四元数 ↔ 欧拉角

通常通过旋转矩阵中转,或按顺序组合单个轴旋转的四元数:

在这里插入图片描述

应用场景

  • 欧拉角:用户界面、简单动画(直观调整角度)。

  • 四元数:复杂旋转插值(如相机平滑转向)、避免万向节锁。

  • 旋转矩阵:图形API(如OpenGL)、与其他变换组合。

总结

  • 直观性:欧拉角 > 旋转矩阵 > 四元数。

  • 计算效率:四元数 > 旋转矩阵 > 欧拉角。

  • 稳定性:四元数 ≈ 旋转矩阵 > 欧拉角(万向节锁)。

根据需求选择:交互设计用欧拉角,引擎底层用四元数,图形管线用矩阵。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值