剑指offer
- 矩阵中的路径
题目描述
请设计一个函数,用来判断在一个矩阵中是否存在一条包含某字符串所有字符的路径。路径可以从矩阵中的任意一个格子开始,每一步可以在矩阵中向左,向右,向上,向下移动一个格子。如果一条路径经过了矩阵中的某一个格子,则之后不能再次进入这个格子。 例如 a b c e s f c s a d e e 这样的3 X 4 矩阵中包含一条字符串"bcced"的路径,但是矩阵中不包含"abcb"路径,因为字符串的第一个字符b占据了矩阵中的第一行第二个格子之后,路径不能再次进入该格子。
class Solution:
def findpath(self,matrix,rows,cols,i,j,path):
global visited
index = i * cols + j
if not path:
return True
haspath = False
if i >= 0 and i < rows and j >= 0 and j < cols and not visited[index] and matrix[index] == path[0]:
visited[index] = True
haspath = self.findpath(matrix,rows,cols,i + 1,j,path[1:]) or self.findpath(matrix,rows,cols,i - 1,j,path[1:]) or self.findpath(matrix,rows,cols,i,j + 1,path[1:]) or self.findpath(matrix,rows,cols,i,j - 1,path[1:])
if not haspath:
visited[index] = False
return haspath
def hasPath(self, matrix, rows, cols, path):
# write code here
if not matrix or not path:
return False
global visited
visited = [False] * rows * cols
for i in xrange(rows):
for j in xrange(cols):
if self.findpath(matrix,rows,cols,i,j,path):
return True
return False
寻找最优路径时,回溯法的精髓在于:
尝试不成功时,能够回退原先版本
if not haspath:
visited[index] = False
这2行代码就完成了回退。
- 机器人的运动范围
题目描述
地上有一个m行和n列的方格。一个机器人从坐标0,0的格子开始移动,每一次只能向左,右,上,下四个方向移动一格,但是不能进入行坐标和列坐标的数位之和大于k的格子。 例如,当k为18时,机器人能够进入方格(35,37),因为3+5+3+7 = 18。但是,它不能进入方格(35,38),因为3+5+3+8 = 19。请问该机器人能够达到多少个格子?
class Solution:
def getDigit(self,k):
s = 0
while k != 0:
s = s + k % 10
k = k // 10
return s
def canArrival(self,threshold, rows, cols,i,j):
global visited
if i >= 0 and i < rows and j >= 0 and j< cols and not visited[i * cols + j] and (self.getDigit(i) + self.getDigit(j)) <= threshold:
visited[i * cols + j] = True
return 1 + self.canArrival(threshold, rows, cols,i + 1,j) + self.canArrival(threshold, rows, cols,i - 1,j) + self.canArrival(threshold, rows, cols,i,j + 1) + self.canArrival(threshold, rows, cols,i,j - 1)
return 0
def movingCount(self, threshold, rows, cols):
# write code here
global visited
visited = [False] * rows * cols
if threshold <= 0 or rows < 0 or cols < 0:
return 0
return self.canArrival(threshold, rows, cols,0,0)