Gaussian Mixture Model(GMM)探索

最近一直在看无监督学习相关的只是,在前面了解了kmeans聚类算法和层次聚类之后,今天我们来探索一下没那么简单的Gassian Mixture Model哈,感受一下数学所带来的震撼和又一次多了对高斯这个神一般的男人的好奇,现在开始转入正题哈!
高斯混合模型,顾名思义,使用多个不同的高斯模型混合而成,用来拟合任意形状的概率分布,至于原因嘛,大家可以看看为什么高斯模型混合模型(GMM)理论上可以拟合任意形状的概率分布呢?,相信一定会小有收获的,因为高斯混合模型这么强,任何形状的概率分布都可以拟合,我们为什么不使用呢?从高斯混合模型这个名字来看,我们需要求的参数包括每个高斯分布的

μk,δk

,以及对应与每一个高斯分布的权重

πk

(假设该分布由k个高斯分布组成),那么如何求解这些参数呢?

思路:

针对一批数据,带上GMM滤镜来分析一个点,可以看做两步:1)首先随机的从k个高斯分布中选择一个,被选中的概率即为πk;2)然后从被选中的高斯分布中选取当前点,这样就可以转化为已知的高斯分布求解。
如何用GMM来求解聚类问题呢?首先我们利用已知的数据推出对应的GMM概率分布,k个高斯模型对应的即为k个簇,根据数据推测概率密度成为密度估计,当我们假定了概率密度的形式此时来求解参数时成为参数估计!
GMM的概率密度函数:
这里写图片描述
GMM的似然函数:
这里写图片描述
有了这些似然函数形式后,我们下面来决定如何来求解这些问题!

解法:

通过观察上面的似然函数形式,我们发现无法使用最大似然估计进行求解对应的参数,因为log里面还有Σ求和,通过最大似然估计无法求解,因此我们选择类似于k-means方法的EM方法进行求解,思路是不断迭代直至似然函数的值收敛为止,即可得到满足条件的πk,μk,δk,下面就来讲一下解法步骤:
1)估计每个数据由k个component产生的概率,类似于kmeans中计算每个点距离不同质心的距离,该概率的解法为:
这里写图片描述
这个式子里面μk,δk都是我们要求解的,我们采用迭代法,当前要求解的μ,δ,π我们选取μk-1,δk-1,πk-1的值或者初值,注意初值的选取,进行迭代计算;
2)求解出了不同的r(i,k),即第i个数据属于第k个高斯分布簇的概率之后,我们就可以怎样了?对了,就是可以将Σ展开,所以llog函数中就变成了没有Σ的πk*N(xi|μk,δk)加和了,然后我们利用最大似然估计即可求出πk,μk,δk三个参数,或者换一种思路理解,第k个高斯分布生成的数据为r(i,k)xi(i=1~N),然后利用最大似然估计即可求出μk,δk以及πk,求解公式为:
这里写图片描述
3)判断GMM的似然函数的值是否收敛,若收敛,则停止,否则重复迭代1),2)步。

详见:

漫谈 Clustering (3): Gaussian Mixture Model
高斯混合模型(GMM)及其EM算法的理解

请参看:
还有针对k-means算法的新的优化算法,感兴趣的同学可以看一下啦,聚类算法——ISODATA算法

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: 高斯混合模型 (Gaussian Mixture Model) 是一种生成模型,假设数据是由多个高斯分布生成的,并使用最大似然估计或EM算法来估计模型参数。它通常用于聚类分析,并在许多领域中都得到了广泛应用,如图像分析、信号处理、生物信息学等。 ### 回答2: 高斯混合模型是一种概率模型,用于对数据进行建模和聚类。它由多个高斯分布混合而成,每个高斯分布代表一个聚类。高斯混合模型适用于具有复杂数据分布的场景,能够对数据的形状、密度和方差等进行建模。 在高斯混合模型中,每个高斯分布都有自己的均值和协方差矩阵。通过选择适当的混合模型参数,可以使得模型能够更好地拟合数据。模型的参数估计可以使用最大似然估计或其他优化算法进行求解。 高斯混合模型可以用于聚类分析,在聚类过程中,模型根据数据分布的不同,将数据点归属于不同的聚类。基于高斯混合模型的聚类方法可以灵活地适应不同形状的数据分布,能够发现非球形和重叠的聚类。 此外,高斯混合模型也可以用于生成新的数据样本。根据已经学得的模型参数,可以从高斯分布中随机采样,生成与原始数据相似的新数据样本。 总之,高斯混合模型是一种常用的概率模型,可以用于数据的建模、聚类和生成。它具有灵活性和准确性,适用于各种不同类型的数据分析问题。 ### 回答3: 高斯混合模型(Gaussian Mixture ModelGMM)是一种用于对数据进行建模和聚类的统计模型。GMM可以看作是多个高斯分布的线性组合,每个高斯分布表示一个聚类。 GMM的基本思想是假设数据是由多个高斯分布组成的混合体。通过估计每个高斯分布的均值和方差,以及混合系数(表示每个分布的权重),可以得到对数据进行建模的 GMM。这样,可以通过计算每个数据点对于每个高斯分布的概率来进行聚类。具体而言,对于给定数据点,计算其属于每个高斯分布的概率,然后根据概率大小将其归为相应的聚类。 GMM的参数估计可以使用最大似然估计(Maximum Likelihood Estimation,MLE)方法。通过迭代优化,可以找到一个局部最优解,使得 GMM 最大化观测数据的似然函数。 GMM有以下几个特点:首先,GMM允许数据点属于多个聚类。每个聚类的权重是小于等于1的概率。其次,GMM对数据的分布形态没有假设,而是通过调整高斯分布的均值和方差来适应数据。最后,GMM可以解决由于观测噪声、缺失数据或异常值引起的数据不完全性和不准确性的问题。 GMM在模式识别、数据挖掘和图像处理等领域广泛应用,例如人脸识别、语音识别和文本分类等。它可以根据数据的分布情况自动进行聚类分析,并可以用于特征提取、数据压缩和异常检测等任务。然而,GMM也存在一些缺点,比如对于大规模数据集的计算复杂度较高,并且对初始参数敏感,需要进行适当选择。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值