FSLeyes 是 3D 和 4D 数据的查看器,可以接受多种类型数据的展示。
接收类型如下:
- NIFTI image files (.nii, .nii.gz).
- MGH image files (.mgh, .mgz).
- GIFTI surface files (.surf.gii, .gii).
- Freesurfer surface files (lh.orig, lh.pial, lh.white, etc).
- FEAT analysis directories (.feat).
- MELODIC analysis directories (.melodic).
- dtifit output directories.
- VTK legacy files (.vtk) which are in a format similar to that produced by the FIRST sub-cortical segmentation tool.
- 2D image files (e.g. .png, .bmp, .jpg, etc).
本文目录
文章目录
1. 如何启动 FSLeyes
在上一节中,我们安装好 FSL 后,FSLeyes 就已经安装好了。通过在终端键入 fsleyes
就可以启动。
$: fsleyes
当您第一次启动 FSLeyes 时,您将看到如下所示的内容:
这里没有加载任何图像,所以是一个空面板。
2. 加载图像
加载图像的方式很多,这里介绍三种加载方式。
2.1 通过终端命令加载
我们要加载某一个图像查看,可以在打开 fsleyes 的时候直接加载,如:
$: fsleyes *.nii.gz
# 这里的 * 指的是图像路径
2.2 通过 File
菜单加载
在软件最上方有一排菜单栏,通过 File
菜单添加。按需要,可以选择加载单个图像,还是文件夹。
2.3 通过 overlay 面板加载
通过 overlay 面板可以实现图像的新增和删除。便于更好的管理图层(类似于 ps 的图层,我习惯这么理解)。
如果你已经加载好图像,我们接下来分析一下界面的功能。
3 界面说明
- overlay toolbar: 字面意思是叠加工具箱。实际上就是控制图层之间的显示,比如透明度,对比度,亮度,窗宽窗位等。
- ortho toolbar: 控制中间正交视图(ortho view)的显示, 比如三个面的排列方式,也可以选择单独显示某个方位。
- overlay list: 叠加列表,控制图像的图层顺序,可以进行上下移动图层,显示和不显示某图层,加载和删除某图层。
- location panel: 位置面板,显示当前的坐标信息和正交体素的像素值。
注意:这里有两个坐标系。显示的都是图中绿色定位线交点的坐标值。第一个坐标是内部的一个坐标系,目前没啥用。第二个坐标比较常用,显示当前所在层的 xyz 三个坐标。下面的Volume
在加载 4D 图像的时候有用,表示加载的 第几个 3D 体积。
如图,我加载的是一个 4D 的脑数据,包含T1,T2,Flair 和 T2增强(假设是这些,不准确)。大小=4x240x240x155, 设置volume=1
, 加载的就是 1x240x240x155.
如果对每个功能的意思不是很了解,把鼠标放在上面,会有解释。
以上就是一个非常简单的入门介绍,接下来介绍一些更高阶的应用。
4 多种视图 View
在菜单栏 View 里面,提供了多种视图供选择。
- ortho view: 正交视图,我们前面使用的都是正交视图
- lightbox view: 灯箱视图,这个功能非常喜欢,他可以选择按轴位,冠状位还是矢状位显示所有的层。
这里,可以非常清晰的看到哪些层面有肿瘤,可以通过调整层间距控制显示的层数。 - Histogram: 直方图,点击就可以直接画出图像的直方图
- 3D view: 3D 视图,可以进行 3D 表面重建,可用于显示器官的形态等。
这里显示了一个脑肿瘤的形态,可以旋转查看。
最后,如果你实验后,发现面板变得非常混乱,可以使用 view > layouts 重新排。
5 如何截屏
当你调到满意的视角之后,可能想保存画面,那么应该怎么做呢?
只要点击界面中的拍照按钮即可截图。
6 是否可以编辑图像
正交视图具有编辑模式,允许您编辑 NIFTI 图像中包含的值。您可以通过tool ⇒ edict mode 菜单选项在任何正交视图中进入编辑模式。可以对图像进行绘制、擦除、填充、选择、复制或粘贴体素。
7 用于论文做图的例子
例如,论文中,经常展示分割结果和 mask 对比,通过这个软件就可以实现不同模型分割结果的对比。
以上简单介绍了 fsleyes 的一些通用功能,更细节的应用可以查看官方文档。Fsleyes 官方文档
文章持续更新,可以关注微信公众号【医学图像人工智能实战营】获取最新动态,一个关注于医学图像处理领域前沿科技的公众号。坚持已实践为主,手把手带你做项目,打比赛,写论文。凡原创文章皆提供理论讲解,实验代码,实验数据。只有实践才能成长的更快,关注我们,一起学习进步~
我是Tina, 我们下篇博客见~
白天工作晚上写文,呕心沥血
觉得写的不错的话最后,求点赞,评论,收藏。或者一键三连