Text Understanding with the Attention Sum Reader Network

关键词

Bi-GRU, attention sum

来源

arXiv 2016.03.04 (published at ACL 2016)

问题

如何利用 attention 机制直接选择答案


文章思路

主要分为以下几步:

  1. 通过 look-up table 将 document 和 query 每个词转化为向量表示
  2. document 部分利用双向 GRU 来 encode,每个 token 都是由前向后向的隐层状态拼接而成;query 都是用前向和后向的 GRU 的 last hidden state 连接在一起来表示的。
  3. 将上面得到的 document 中每个词的向量与 query 的向量做点积,并利用 softmax 得到概率分布。
  4. 将相同的词的概率加起来,选择概率最大的词作为答案。

资源

论文地址:https://arxiv.org/abs/1603.01547v1.pdf

相关工作

本文的模型算是 Attentive Reader 的简化版本,同时借鉴以下工作:

Memory Networks 在候选词周围开一个大小为 8 的窗口,然后直接将窗口内的词向量相加,显然不能捕获窗口外的信息。

Pointer Networks 这种架构能够解决输出与变长的输入有关的问题,比如对变长序列分类、组合优化问题 (Travelling Salesman Problem)。传统的 attention 是为了将 encoder 的隐层组合成一个 context vector,这一模型通过 attention 作为指针去选择输入的某个部分作为输出。

简评

文中直接利用 attention 机制选择答案,模型就比较偏爱出现次数多的词,这就隐含了出现次数比较多的词作为答案的可能性大的假设。
另外实验得到了一些有趣的结论,比如:在CNN/Daily Mail数据集上,随着document的长度增加,测试的准确率会下降,而在CBT数据集上得到了相反的结论。从中可以看得出,两个数据集有着不同的特征,构造方法也不尽相同,因此同一个模型会有着不同的趋势。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值