“数据资产化”是企业发展的重要内涵。“数据”并不仅指以数字形式存储的信息,根据其特性及治理方法可以划分为内部数据与外部数据,结构化数据、非结构化数据与半结构化数据,元数据与主数据等。
正在上传…重新上传取消
数据爆发
IT设施“扩容”、IoT广泛连接带来数据暴增

数据治理需求普遍存在
非结构化数据成价值挖掘重点,助力企业实现数据应用闭环
因地制宜
设计数据治理架构
数据治理的核心包括数据标准管理、数据集成管理、元数据管理、主数据管理、数据资产管理、数据质量管理、数据模型管理、数据服务与安全管理模块,可根据企业特性、实际需求,设计搭建个性化的数据治理架构。
正在上传…重新上传取消
二
主题:面向人工智能的数据治理
AI应用规模化
带动大数据智能市场蓬勃发展,金融数据率先释放价值
正在上传…重新上传取消
大数据智能市场
融资规模稳步提升,事件数量创历史新高

需求传导
AI应用引发的数据治理需求,针对性体系解决重复性治理

体系搭建和数据准备
以AI应用数据需求为核心
正在上传…重新上传取消
数据质量和标准
唤醒沉睡数据,挖掘核心价值,实现数据共享
多源异构数据的质量管理体系可从数据有效性、一致性、唯一性、时序性、完备性、完整性、合理性和准确性等维度建立。其中,数据合理性和准确性很大程度上决定了AI模型的分析决策效果,是需重点关注提升的维度模块。
数据标准是治理工作的基础,是数据共享、价值挖掘的核心环节,为AI模型开发及应用提供“一致的数据语言”,事关全局统一的数据定义与价值体系。
正在上传…重新上传取消
特征管理与效果优化
将多源异构数据转化为“结构化数据”,提升AI应用落地效果
在圈定AI数据源范围并接入相应数据后,特征管理中台会对数据进行预处理,而后经过特征工程转化为可理解的结构化数据,投喂给AI模型,可以显著提升AI应用的规模化落地效果。

三
参与:行业规模与受益立足点
数智融合带来行业发展
数据治理与AI应用交汇,多元厂商参与行业竞合
从行业厂商类型来看,主要包括咨询公司、数据服务提供商和人工智能产品提供商三类,各类厂商根据自身业务特点和切入方式获得差异化竞争优势,形成竞争与合作共存的行业格局。
以“智”立足
开拓百亿市场
如今,“AI应用驱动”已成为面向人工智能的数据治理服务的核心立足点。预计到2026年,中国数据治理市场规模将达294亿元,面向人工智能的数据治理市场规模将突破百亿,产业生态圈将持续良性发展。
四
展望:治理陷阱与趋势洞察
数据埋点大而全的陷阱
切记抓大放小,从核心数据着手
数据治理体系的流转运营
沟通、组织、聚焦、文化
数据治理是系统性工程,供需两侧要齐心协力,共同、持续、优质地运营数据治理体系。形成明确的目标、合理的组织、严格的监管、完善的系统,这样才能使数据治理工作得到保障,达成高效流转运营。
完善数据治理安全框架
确保数据安全合规
大数据时代,数据安全挑战加剧。企业需建立较为完备的数据安全治理框架,让数据采集、存储、传输、处理均有对应的管理依据,在挖掘数据资产、发挥数据价值的同时,确保数据全周期的安全合规。
联邦学习辅助数据合规
多行业率先应用
数据“自治与自我进化”
将数据治理流程化、自动化、智能化
数据规模的指数级增长给治理工作带来巨大压力。随着人工智能和RPA等前沿技术逐步应用,数据治理工作将渐趋自动化与智能化。“治理+AI”的良性循环,将为企业数据治理和应用带来“多快好省”的新局面。