DG4AI:人工智能+数据治理,如何融合?

一、数据治理与人工智能的边界是什么?

数据治理是组织层面的数据管理活动的集合。旨在通过制定政策、流程和技术手段来实现数据的有效管理,涉及数据的收集、存储、使用、共享和保护等环节。其实施过程要确保通过标准化流程提升数据的可用性。

人工智能是计算机科学的一个分支,旨在通过算法和模型的学习和优化,模拟人类智能行为。其目的是优化业务流程,探索数据关联特性。

简单一句话概括为:数据治理关注“数据本身的管理”,而AI关注“数据驱动的智能应用”。

二、两者融合指的是什么?哪些方向或领域是融合的重点?

数据治理与人工智能的融合,是通过人工智能技术增强数据治理的效率和效果,同时利用数据治理的框架确保人工智能应用的数据质量、可信性、合规性等。这种融合并不是简单的数据技术+人工智能技术,而是一个双向赋能的过程。传统数据治理过程融合人工智能技术,实现数据全生命周期的智能化管理和数据开发利用;人工智能技术搭载在数据治理框架下,借助于更优质的数据集以及数据治理约束规范和流程,推动人工智能训练模型的可解释性、输出结果的可信性。

两者融合的重点领域主要有:

图片

数据质量与AI模型优化

通过数据清洗、校验等技术提升数据质量,其中清洗规则、校验技术可以结合人工智能相关的算法进行提升;同时借助AI工具实现数据质量实施监控,对异常数据进行标记或自动修复,从而为模型优化提供更可靠的输入。

元数据管理与AI可解释性

高质量元数据可以让AI更好的理解数据的来源、结构和用途,自动提取数据血缘关系,利用知识图谱生成元数据地图,增强模型关系的可解释性;AI技术进一步可以增强元数据自动分类、标记和管理,减少人工工作量,并提供新的观察视角,提升元数据的可用性和准确性。

数据安全与AI防御

AI结合区块链等技术实现数据的不可篡改,从而提升实时监测的安全威胁,有助于提升主动防御的能力;也可以通过隐私计算、数据脱敏、安全沙箱等技术,确保AI模型在开发和部署过程中的数据安全。

数据资产化与AI价值释放

通过数据资产化,企业可以将数据转化为可复用、可增值的资源,为AI模型提供更丰富的训练数据;AI技术提供自动分类和标

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值