AI视野·今日CS.CV 计算机视觉论文速览
Mon, 16 Sep 2019
Totally 33 papers
?上期速览✈更多精彩请移步主页
Interesting:
?DeepHomography内容感知的单应性估计, 由于传统单应性估计方法对于图像质量十分敏感,低纹理和低光照会造成估计误差。先前基于学习的估计方法大多为合成图像的监督学习或基于航空图像的非监督学习,忽略了深度不一致在单应性中的作用。同时对于图像的统一处理忽视了前景和动态目标。这篇文章提出了一种新的非监督方法,首先对于图像进行掩膜学习排除异常区域(无纹理),随后基于得到的特征计算损失代替了直接从图像得到损失,同时还提出了一个新的数据集包含了多种具有挑战的情况。(from 电子科大 旷视)
排除动态、模糊和低纹理的掩膜生成:
一些数据集内得到的结果:
code:https://github.com/JirongZhang/DeepHomography
?荧光显微镜数据合成与实例分割, 研究人员提出了一种合成方法生成荧光显微镜模拟数据集,并利用空间约束的循环一致性对抗网络来进行细胞核检测。(from 普渡 印第安纳大学)
训练方法与合成数据:
细胞核检测与掩膜分割,下图为语义分割网络:
分割结果:
数据合成方法:Nuclei Segmentation of Fluorescence Microscopy Images Using Three Dimensional Convolutional Neural Networks
Three Dimensional Fluorescence Microscopy Image Synthesis and Segmentation,cvpr2018 CVMI workshop
实验室主页:https://engineering.purdue.edu/~micros/publications.html
?FakeSpotter一个AI合成假脸欺诈检测基线模型, (from 南洋理工、九州大学、阿里巴巴、小米)
利用每一层神经元的行为作为特征:
这篇文章页脚中有很多参考代码可以学习
?有云台单目相机的跟随机器人, (from 中科院大学)
?FoodTracker实时食物检测的移动端实现, (from McGill University)
检测结果和营养分析:
dataset:UECFood100 [11] and UECFood256 [12] benchmarks
?3D U2-Net基于三维Unet的多域医学图像分割方法,(from 浙大 鹏城实验室)
?异常图像检测,检测出背离整体分布的异常图像,(from 飞利浦研究 罗蒙索夫大学)
?基于双分支图网络的语义分割方法,(from 牛津 北大 深动科技)
同时基于空间特征和通道维度进行处理:
?基于在线多尺度卷积稀疏编码模型实现,并利用简化最大后验框架和ADMM算法求解得到视频去雨雪效果,(from 西安交大)
Daily Computer Vision Papers
MRI Brain Tumor Segmentation using Random Forests and Fully Convolutional Networks Authors Mohammadreza Soltaninejad, Lei Zhang, Tryphon Lambrou, Guang Yang, Nigel Allinson, Xujiong Ye 在本文中,我们提出了一种新的基于学习的多模态MRI图像中脑肿瘤自动分割方法,该方法包含两组机器学习和手工制作的特征。完全卷积网络FCN形成机器学习功能,基于文本的功能被视为手工制作的功能。随机森林RF用于将MRI图像体素分类为正常脑组织和肿瘤的不同部分,即水肿,坏死和增强肿瘤。该方法在BRATS 2017挑战数据集上进行评估。结果表明,该方法提供了有希望的分割。对于整个肿瘤,核心和增强肿瘤,针对地面真相的自动脑肿瘤分割的平均骰子重叠测量值分别为0.86,0.78和0.66。 |
Hierarchical Joint Scene Coordinate Classification and Regression for Visual Locali |