最小二乘问题总结

本文总结了最小二乘问题的基础概念和求解方法,包括线性最小二乘和非线性最小二乘。线性最小二乘通过矩阵运算求解,而非线性最小二乘则涉及最快下降法、高斯牛顿法、LM阻尼法和Dog-Leg法等迭代求解策略。这些内容在视觉惯性里程计(VIO)等领域的优化中至关重要。
摘要由CSDN通过智能技术生成

1.题外话

最近在学习深蓝学院的VIO课程,最小二乘问题的求解作为基础知识,在VIO的优化过程中非常重要。因此在这里对课程内容和查阅的资料做个总结,以便能够加深对最小二乘问题的理解。

2.最小二乘基础概念

最小二乘问题泛指具有如下形式的问题。
m i n f ( x ) = 1 2 ∑ i = 1 m r i 2 ( x ) (1) minf(x) =\frac{1}{2}\displaystyle\sum_{i=1}^{m}r_{i}^2(x) \tag{1} minf(x)=21i=1mri2(x)(1)

其中m一般指实例的个数, r i ( x ) r_{i}(x) ri(x)指残差,即预测值与观测值的差, f ( x ) f(x) f(x)称为损失函数(或代价函数,cost function),根据模型的不同有线性模型和非线性模型,分为线性最小二乘和非线性最小二乘。

最小二乘问题的主要思想就是求解未知参数 ,使得预测值与观测值之差(即误差,或者说残差)的平方和达到最小。

最小二乘问题也可以写成如下的向量形式。

r ( x ) = ( r 1 ( x ) , r 2 ( x ) , r 3 ( x ) . . . r m ( x ) ) T r(x) = (r_1(x),r_{2}(x),r_{3}(x)...r_{m}(x))^T r(x)=(r1(x),r2(x),r3(x)...rm(x))T,则(1)式可表达为
f ( x ) = 1 2 ∣ ∣ r ( x ) ∣ ∣ 2 (2) f(x) = \frac{1}{2}||r(x)||^2\tag{2} f(x)=21r(x)2(2)

3.线性最小二乘问题的求解方法

线性最小二乘求解较为方便。我们假设模型为
y = θ 1 x 1 + θ 2 x 2 + θ 3 x 3 + . . . + θ n x n (3) y= \theta_{1} x_{1}+\theta_{2} x_{2}+\theta_{3} x_{3}+...+\theta_{n} x_{n}\tag{3} y=θ1x1+θ2x2+θ3x3

  • 31
    点赞
  • 106
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值