关注:决策智能与机器学习,深耕AI脱水干货
作者 | Mat Steininger
来源 | Towards data science
前言
你有没有听人说过,他们多么希望能回到过去,投资苹果或亚马逊?好吧,他们做不到,而且无论他们花多少时间在股市,他们都不会预测下一个快速致富的投资。事实上,如果你沉迷股市,你可能会在一周内破产,这是我在这篇文章中唯一能保证的。
然而,让我们看看,我们是否可以使用直接的量化金融和机器学习的概念,是否可以在一定程度上准确的预测股票走势。在本教程中,我们将看看我们是否能够准确地预测特定股票的短期走势。
什么是量化金融?
量化金融是利用大数据集和数学模型来分析金融市场。假设我们有一堆公式可以让我们更好地理解某只股票,我们用它们来猜测预测趋势,这就是量化金融。如果我发现了任何开创性的指标、公式或模型,那我肯定是在撒谎,但让我们看看我们是否能自己创造,或许在未来,能从中赚钱。最终,我们或许能够将《华尔街之狼》(The Wolf of Wall Street)中的乔丹•贝尔福特(Jordan Belfort)变成一种算法。
交易术语
我将使用一些投资和交易领域特有的术语,所以如果你有任何不确定,不要害怕去检索术语。我不是金融专家,所以我会尽量少用。
以下是一些你应该知道的术语:
指标:表示股票价格趋势的统计数据
标准普尔500指数:500家最大上市公司的加权指数
短期走势:股票的30天趋势
移动平均线:一段时间内股票收盘价的平均
收集数据
所有好的数据科学项目都依赖于输入数据的质量。幸运的是,由于股票交易的性质,我们可以使用pandas-datareader(熊猫的一个扩展,内置web抓取功能)和令人惊讶的不朽的Yahoo!金融网站。
import pandas_datareader as pdr
import datetime
# We can choose any date up to that stock’s IPO
start = datetime.datetime(2014, 1, 1)
# Up to most recent data
end = datetime.date.today()
# We’ll look at F which is Ford
st