预测股票走势的ai模型

📈 AI 股票走势预测模型

深度学习 + 时间序列分析 来构建一个 股票预测 AI,基于历史数据预测未来走势。


🚀 1. 关键功能

AI 选股(基于财务数据 + 技术指标)
股票走势预测(LSTM/Transformer)
智能筛选高增长潜力股
可视化分析


🛠 2. 关键技术

📊 数据来源:Yahoo Finance / Alpha Vantage
📈 财务分析:PE、EPS、ROE、PB、成交量
🧠 机器学习选股:随机森林 / XGBoost
🔮 深度学习预测:LSTM / Transformer
📉 技术指标:MACD、RSI、布林带


💻 3. 代码实现

1️⃣ 安装依赖

pip install yfinance pandas numpy scikit-learn xgboost tensorflow matplotlib

👉 yfinance:获取实时股票数据
👉 scikit-learn:数据预处理 + 机器学习
👉 xgboost:训练选股模型
👉 tensorflow:LSTM 预测未来股价


2️⃣ 获取股票数据

import yfinance as yf
import pandas as pd

# 选取多个股票
stocks = ["AAPL", "TSLA", "MSFT", "GOOGL", "AMZN"]

def get_stock_data(ticker):
    """获取股票财务指标 & 历史数据"""
    stock = yf.Ticker(ticker)
    hist = stock.history(period="2y")  # 获取过去 2 年数据
    
    # 计算技术指标(简单示例)
    hist["MA50"] = hist["Close"].rolling(window=50).mean()  # 50 日均线
    hist["MA200"] = hist["Close"].rolling(window=200).mean()  # 200 日均线
    hist["Volume_Change"] = hist["Volume"].pct_change()  # 成交量变化
    
    # 获取财务数据
    info = stock.info
    pe = info.get("trailingPE", None)  # 市盈率
    eps = info.get("trailingEps", None)  # 每股收益
    roe = info.get("returnOnEquity", None)  # 股本回报率
    pb = info.get("priceToBook", None)  # 市净率
    
    return hist, {"PE": pe, "EPS": eps, "ROE": roe, "PB": pb}

# 处理多个股票
data_dict = {}
fundamentals = []
for stock in stocks:
    hist, fund = get_stock_data(stock)
    data_dict[stock] = hist
    fund["Stock"] = stock
    fundamentals.append(fund)

# 转换为 DataFrame
fund_df = pd.DataFrame(fundamentals)
print(fund_df)

3️⃣ 机器学习选股

from sklearn.ensemble import RandomForestClassifier
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler

# 处理数据
fund_df.dropna(inplace=True)
X = fund_df[["PE", "EPS", "ROE", "PB"]]
y = (fund_df["ROE"] > 0.15).astype(int)  # 例如 ROE > 15% 作为优质股票

# 归一化
scaler = StandardScaler()
X_scaled = scaler.fit_transform(X)

# 训练选股模型
X_train, X_test, y_train, y_test = train_test_split(X_scaled, y, test_size=0.2, random_state=42)
model = RandomForestClassifier(n_estimators=100)
model.fit(X_train, y_train)

# 预测潜力股
fund_df["AI_Selection"] = model.predict(X_scaled)
print(fund_df[fund_df["AI_Selection"] == 1])  # 选出的优质股票

4️⃣ 预测股价(LSTM)

import numpy as np
from sklearn.preprocessing import MinMaxScaler
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import LSTM, Dense, Dropout

# 选取 AI 选出的优质股
selected_stock = fund_df[fund_df["AI_Selection"] == 1]["Stock"].iloc[0]
stock_data = data_dict[selected_stock][["Close"]]

# 归一化
scaler = MinMaxScaler(feature_range=(0, 1))
scaled_data = scaler.fit_transform(stock_data)

# 构造时间序列
def create_sequences(data, time_steps=60):
    X, y = [], []
    for i in range(len(data) - time_steps):
        X.append(data[i : i + time_steps])
        y.append(data[i + time_steps])
    return np.array(X), np.array(y)

time_steps = 60
X, y = create_sequences(scaled_data, time_steps)

# 划分训练 & 测试集
split = int(len(X) * 0.8)
X_train, X_test = X[:split], X[split:]
y_train, y_test = y[:split], y[split:]

# LSTM 预测模型
model = Sequential([
    LSTM(50, return_sequences=True, input_shape=(time_steps, 1)),
    Dropout(0.2),
    LSTM(50, return_sequences=False),
    Dropout(0.2),
    Dense(25),
    Dense(1)
])
model.compile(optimizer="adam", loss="mean_squared_error")
model.fit(X_train, y_train, epochs=20, batch_size=32)

# 预测股价
predictions = model.predict(X_test)
predictions = scaler.inverse_transform(predictions)

# 可视化
import matplotlib.pyplot as plt
plt.figure(figsize=(12,6))
plt.plot(stock_data.index[split+time_steps:], scaler.inverse_transform(y_test.reshape(-1,1)), label="真实价格")
plt.plot(stock_data.index[split+time_steps:], predictions, label="预测价格")
plt.legend()
plt.title(f"股票价格预测 - {selected_stock}")
plt.show()

🚀 优化 AI 选股模型,让选股更精准!

我们可以提升 AI 选股模型 的准确性,方法包括:
✅  财务指标(营收增长、负债率、自由现金流)
使用 XGBoost 代替随机森林(更强的特征学习能力)
✅  技术指标(MACD、RSI、布林带)
结合市场情绪分析(新闻 & 社交媒体情绪)


1️⃣ 安装依赖

pip install yfinance pandas numpy scikit-learn xgboost matplotlib ta

👉 ta:用于计算技术指标(MACD、RSI)
👉 xgboost:更强的机器学习选股模型


2️⃣ 获取股票数据(加入更多财务指标)

import yfinance as yf
import pandas as pd

# 选取多个股票
stocks &#
股神--人工智能股票预测系统是专门为股票投资者开发的一套全新的基于人工智能技术的股票趋势预测软件平台。该软件以基因演化算法(GP)为内核对股票交易历史数据进行自动建模和学习,挖掘出股票交易大数据中隐藏的行为规律,并以此为依据对下一个股票日的最高价和最低价的涨跌趋势进行预测分析。该软件能够帮助您了解何时进入股市,何时退出股市,并在最佳的时机买进或卖出股票,从而获取最大的利润和收益。 支持6种典型的股票类别:上证指数、上证A股、上证B股、深证指数、深证A股和深证B股。 精确的股票预测信息(如上涨、下跌或持平)和买卖推荐信息(如买入、卖出、持股以及买入价、卖出价等)。 基因演化算法参数支持用户自定义,默认设置为种群大小:30,杂交概率:0.8,变异概率:0.1,最大运行代数:1000。 支持批量操作,如股票批量评测、模型批量训练、股票批量预测、批量增加股票代码、批量添加/撤销我的股票池等。 对大多数股票而言,最高价与最低价的涨跌趋势预测准确度达60%-80%;对部分股票而言,预测准确度最高可达90%。 仅需简单的操作即可完成股票评测、智能选股、模型训练以及股票预测等功能。 系统主界面支持从云数据库和本地数据库自动更新最优股票预测信息。 支持流行的微软Windows操作系统,如Windows 98/Me/2000/XP/Vista/7。 股神--人工智能股票预测系统既适用于专业的股票投资者,也适用于股票初学者。您可以通过股神系统轻轻松松地完成股票评测、智能选股、模型训练以及股票预测等功能,所有操作简单易懂,软件界面友好大方。
### Qwen 模型在股票市场趋势预测中的应用 对于Qwen2.5-7B模型应用于股票市场趋势预测,定制化调整是关键策略之一。针对金融行业的特殊需求,该模型可以通过微调来优化性能,从而更好地捕捉金融市场动态并作出更精准的趋势判断[^1]。 具体来说,在实操层面,通过对历史股价及相关财经新闻等数据集进行标注处理后,利用这些标记的数据对Qwen模型实施更新操作。此过程使得模型能够依据其预测结果同真实情况间的差距做出相应调整,进而逐步改善在股市预测任务上的准确性[^2]。 此外,为了进一步强化这一应用场景的表现力,还可以考虑将Qwen与其他先进技术相结合,比如引入时间序列分析算法或是深度学习框架下的LSTM(Long Short-Term Memory)网络结构,以此构建更为复杂且高效的预测体系。这种多维度的技术融合不仅有助于挖掘隐藏于海量交易记录背后的价值信息,同时也可有效应对诸如非线性变化等因素带来的挑战。 下面是一个简单的Python代码片段展示如何加载已训练好的Qwen模型来进行初步的股票价格变动方向预测: ```python from transformers import AutoModelForSequenceClassification, AutoTokenizer import torch tokenizer = AutoTokenizer.from_pretrained("path_to_qwen_model") # 加载自定义路径下保存的Qwen模型 model = AutoModelForSequenceClassification.from_pretrained("path_to_qwen_model") def predict_stock_trend(text_input): inputs = tokenizer(text_input, return_tensors="pt", truncation=True, padding=True) outputs = model(**inputs)[0] prediction = torch.argmax(outputs).item() if prediction == 0: return "下跌" elif prediction == 1: return "上涨" sample_news = "最新发布的财报显示公司业绩超出预期..." print(predict_stock_trend(sample_news)) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值