摄像机的内外参模型

摄像机的内外参模型

  • 本文主要讲摄像机内外参模型中一些看法
  • 参考书籍 Hartley 《计算机视觉中的多视图几何》

1坐标系定义

  • 世界坐标系{W}:三维空间。
  • 相机坐标系{C}:XY方向分别于像素平面的UV方向同向,原点光心。
  • 图像坐标系{I}:XY方向分别于像素平面的UV方向同向,没有Z轴。
  • 像素坐标系{P}:以像素为单位。
    摄像机模型

2图像坐标系是否有必要?

  • 本书没有包括这个坐标系, 我认为是有必要的。因为有的时候需要用到投影点在图像坐标系{I}的坐标,比如对极几何求本质矩阵E的时候。

3推导简易流程

参数设定为
图片名称
推导流程
图片名称

4图像坐标系成像点x和像素坐标系成像点m关系

这里写图片描述
这一点书写的很含糊,很多地方都是相差一个尺度因子一笔带过了,实际上也没错,这里写的是正式的表达式。

5内外参模型的理解

通常得到的内外参综合模型为
摄像机矩阵
- 书中最左边用的是一个尺度因子s表示,而实际上这个尺度因子就是Z,是M在相机坐标系中的齐次坐标,和最右边的世界坐标系的M是不同的。

6焦距所占像素系数sx和sy举例分析

图片名称

阅读终点,创作起航,您可以撰写心得或摘录文章要点写篇博文。去创作
  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
### 回答1: OpenCV是一个开源的计算机视觉库,提供了很多图像处理和计算机视觉算法的功能。其中,stereocalibration 是其重要的功能之一。 Stereocalibration (立体标定)是指通过对立体摄像机进行标定,获取两个摄像机之间的相对位置和姿态关系的过程。通过立体标定,我们可以得到摄像机的内(内部数)和外(外部数),来实现立体视觉应用的效果。 在OpenCV中,实现立体标定的方法为cv::stereoCalibrate。该函数需要输入最少8组匹配的立体校准图像点对,并输出摄像机和外矩阵。在进行立体标定之前,需要先进行单目摄像机的标定(通过cv::calibrateCamera函数),获取摄像机的内矩阵。 进行立体标定时,需要确保两个摄像机存在一定的平行关系,即两个摄像机的视野相同,且图像中有一定数量的共视点。标定过程会计算两个摄像机之间的旋转矩阵和平移矩阵,通过这些数可以实现对图像的三维重建以及深度信息的获取。 值得注意的是,立体标定的精度会受到多种因素的影响,如图像噪声、特征点提取的准确性等。因此,在进行立体标定的过程中,需要谨慎选择标定图像,优化特征点匹配算法,以及对标定结果进行评估和优化。 总结来说,OpenCV的立体标定功能为我们提供了实现立体视觉应用的基础,通过标定摄像机内外,我们可以获得摄像机的几何关系,从而实现深度信息的获取和三维重建等应用。但在使用过程中需要注意标定数的选择和精度评估,以获得较好的标定效果。 ### 回答2: OpenCV是一个开源的计算机视觉库,它提供了许多用于图像处理和计算机视觉任务的函数和工具。其中一个重要的功能是立体摄像机标定(stereo calibration)。 立体摄像机标定是通过对立体摄像机进行一系列的计算和校准,使其能够准确地测量和重建三维物体的几何信息。 在标定过程中,需要收集一组立体图像对(即左右两个摄像机拍摄的同一场景),并对这些图像进行处理和分析。 首先,必须确定摄像机的内部数,如焦距、主点位置和畸变系数。这可以通过摄像机模型和一组已知的三维点与它们在图像中的对应点来完成。OpenCV提供了一些函数,可以自动检测并计算这些内部数。 接下来,需要确定摄像机的相对位置和姿态(即外部数)。这可以通过对图像中的特征点进行匹配,并使用三角测量技术计算两个摄像机的相对位置和姿态。 一旦摄像机的内部和外部数都已确定,我们就可以使用立体摄像机进行深度感知和三维重建。通过将左右两个图像对应的像素点投影到三维空间中,并计算它们之间的距离,就可以得到三维物体的位置和形状信息。 OpenCV提供了一些函数和工具,可帮助我们执行所有这些步骤。它包括摄像机标定函数(calibrateCameraStereo)和立体匹配函数(stereoRectify,stereoMatch),这些函数可以方便地进行标定和三维重建。 总之,OpenCV的立体摄像机标定功能可以帮助我们准确地测量和重建三维物体的几何信息。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Zhong-hua

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值