大模型学习之书生·浦语大模型1——全链路开源体系

本文介绍了书生·浦语大模型的开源历程,包括InternLM系列的性能提升,以及从模型选择、微调到部署的全链条开源体系,涵盖了数据预训练、XTuner优化、OpenCompass评测和智能体部署等关键环节。
摘要由CSDN通过智能技术生成

在这里插入图片描述

书生·浦语大模型全链路开源体系

在这里插入图片描述
大模型成为热门关键词
在这里插入图片描述
大模型成为发展通用人工智能的重要途径,未来是使用一个模型应对多种任务,多种模态。

书生·浦语大模型开源历程

在这里插入图片描述
在这里插入图片描述

  • InternLM-7B
  • InternLM-20B
  • InternLM-123B

在这里插入图片描述
性能达到LIama2-70B水平

从模型到应用

在这里插入图片描述
在这里插入图片描述

  • 模型选型,不同维度上不同业务上的能力
  • 业务场景是否复杂,非常复杂的话直接开源模型可能不能满足需求
  • 是否算力足够,如果足够可以进行续训练,或者全参数微调,如果不够就只能微调
  • 业务场景是否需要与环境交互,是否需要调用外部API或者数据库,构建智能体
  • 模型评测
  • 模型部署

全链条开源开放体系

在这里插入图片描述

  • 数据:书生万卷
  • 预训练:InternLM-train
  • 微调:XTuner
  • 部署:LMDeploy
  • 评测:OpenCompass
  • 应用:Lagent AgentLego

数据

在这里插入图片描述
在这里插入图片描述

  • OpenDataLab
  • 5400+数据集
  • 30+模态
  • 80TB数据大小

预训练

在这里插入图片描述

微调

在这里插入图片描述
在这里插入图片描述

  • XTuner
  • 兼容不同算法
  • 兼容不同生态模型和数据集
  • 自动化优化加速

在这里插入图片描述

评测

在这里插入图片描述
在这里插入图片描述

  • OpenCompass
  • 6大维度
  • 80+评测集
  • 40w+评测题目
    在这里插入图片描述
    在这里插入图片描述
  • 丰富的模型支持
  • 分布式高效评测
  • 便捷的数据集接口
  • 敏捷的迭代能力

在这里插入图片描述

  • 丰富的模型支持

部署

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

智能体

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

总结

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

uncle_ll

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值