机器学习——PPO补充

On-policy vs Off-policy

在这里插入图片描述

  • 今天跟环境互动,并学习是on-policy

  • 只是在旁边看,就是Off-policy
    在这里插入图片描述

  • 从p中选q个重要的,需要加一个weight p(x)/q(x)

  • p和q不能相差太多
    在这里插入图片描述
    在这里插入图片描述

  • 采样数太少导致分布差很多,导致weight发生变化

On-Policy -> Off-Policy

在这里插入图片描述
在这里插入图片描述

得到新的loss函数

PPO

在这里插入图片描述

  • 衡量 θ \theta θ θ ′ \theta' θ之间的kl散度,衡量二者行为上的相似性,而不是参数上的相似性

在这里插入图片描述

  • Adaptive KL Penalty

在这里插入图片描述

  • 绿色的线是第一项,蓝色是第二项

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

uncle_ll

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值