2.4连续型随机变量与概率密度

连续型随机变量

  • 对于随机变量 X X X的分布函数 F ( x ) F(x) F(x)
  • 若存在非负 f ( x ) f(x) f(x)
  • 对任意实数 x x x,有 F ( x ) = ∫ − ∞ x f ( t ) d t F(x)=\int_{-\infty}^xf(t)dt F(x)=xf(t)dt X X X为连续型随机变量, f ( x ) f(x) f(x) X 的 概 率 密 度 函 数 ( 概 率 密 度 ) X的概率密度函数(概率密度) X()

f ( x ) f(x) f(x)的性质

  • 1、 f ( x ) ≥ 0 f(x)\ge0 f(x)0
  • 2、 ∫ − ∞ + ∞ f ( x ) d x = 1 \int_{-\infty}^{+\infty}f(x)dx=1 +f(x)dx=1
  • 3、对 ∀ ( x 1 ≤ x 2 ) ∈ R \forall (x_1\le x_2)\in R (x1x2)R, P { x 1 < X ⩽ x 2 } = F ( x 2 ) − F ( x 1 ) = ∫ x 1 x 2 f ( x ) d x P\left\{x_{1}<X \leqslant x_{2}\right\}=F\left(x_{2}\right)-F\left(x_{1}\right)=\int_{x_1}^{x_{2}} f(x) \mathrm{d} x P{x1<Xx2}=F(x2)F(x1)=x1x2f(x)dx
  • 4、若 f ( x ) f(x) f(x) x x x处连续,则 F ′ ( x ) = f ( x ) F'(x)=f(x) F(x)=f(x)
    • 由性质4,得到 f ( x ) = lim ⁡ Δ x → 0 + F ( x + Δ x ) − F ( x ) Δ x = lim ⁡ x → 0 + P { x < X ⩽ x + Δ x } Δ x \begin{aligned} f(x) &=\lim _{\Delta x \rightarrow 0^{+}} \frac{F(x+\Delta x)-F(x)}{\Delta x} \\ &=\lim _{x \rightarrow 0^{+}} \frac{P\{x<X \leqslant x+\Delta x\}}{\Delta x} \end{aligned} f(x)=Δx0+limΔxF(x+Δx)F(x)=x0+limΔxP{x<Xx+Δx}于是有 P { x 1 < X ⩽ x 2 } ≈ f ( x ) △ x P\left\{x_{1}<X \leqslant x_{2}\right\}\approx f(x)\triangle x P{x1<Xx2}f(x)x
  • 5、对于连续型随机变量X,X取任意指定值的概率为0,即 P { X = a } = 0 P\{X=a\}=0 P{X=a}=0
    • 所以,计算区间概率时,大可不必关注端点的概率值: P { a < X ⩽ b } = P { a ⩽ X ⩽ b } = P { a < X < b } P\{a<X \leqslant b\}=P\{a \leqslant X \leqslant b\}=P\{a<X<b\} P{a<Xb}=P{aXb}=P{a<X<b}

三种连续型随机变量

均匀分布

  • X ∼ U ( a , b ) X\sim U(a,b) XU(a,b)
  • f ( x ) = { 1 b − a a < x < b 0 其 他 f(x)=\begin{cases}\frac1{b-a}&a<x<b\\0&其他\end{cases} f(x)={ba10a<x<b
  • F ( x ) = { 0 , x < a x − a b − a , a ⩽ x < b 1 , x ⩾ b F(x)=\left\{\begin{array}{ll} 0, & x<a \\ \frac{x-a}{b-a}, & a \leqslant x<b \\ 1, & x \geqslant b \end{array}\right. F(x)=0,baxa,1,x<aax<bxb

指数分布

  • X 服 从 参 数 为 θ > 0 X服从参数为\theta>0 Xθ>0的指数分布
  • f ( x ) = { 1 θ e − x θ , x > 0 0 , f(x)=\left\{\begin{array}{l}\frac{1}{\theta} \mathrm{e}^{\frac{-x} { \theta}}, x>0\\0,\end{array}\right. f(x)={θ1eθx,x>00,
  • F ( x ) = { 1 − e − x θ , x > 0 0 , 其 他 F(x)=\begin{cases}1-e^{-\frac x{\theta}},&x>0\\0,&其他\end{cases} F(x)={1eθx,0,x>0
  • 性质:无记忆性,即对 ∀ s , t > 0 \forall s,t>0 s,t>0,有 P { X > s + t ∣ X > s } = P { X > t } P\{X>s+t|X>s\}=P\{X>t\} P{X>s+tX>s}=P{X>t}如果用灯泡寿命来理解,就是如果元件已经使用s小时,它总共至少可使用s+t小时的条件概率=元件从一开始就至少能使用t小时的概率

正态/高斯分布

  • X ∼ N ( μ , σ > 0 ) X\sim N(\mu,\sigma>0) XN(μ,σ>0)
  • f ( x ) = 1 2 π σ e − ( x − μ ) 2 2 σ 2 , − ∞ < x < ∞ f(x)=\frac{1}{\sqrt{2\pi}\sigma}e^{-\frac{(x-\mu)^2}{2\sigma^2}},-\infty<x<\infty f(x)=2π σ1e2σ2(xμ)2,<x<
  • x = μ x=\mu x=μ时, f ( μ ) = f m a x ( x ) = 1 2 π σ f(\mu)=f_{max}(x)=\frac1{\sqrt{2\pi}\sigma} f(μ)=fmax(x)=2π σ1
  • 证明: ∫ − ∞ + ∞ f ( t ) d t = 1 \int_{-\infty}^{+\infty}f(t)dt=1 +f(t)dt=1
    • 变量代换: t = x − μ σ t=\frac{x-\mu}{\sigma} t=σxμ则原积分= 1 2 π ∫ − ∞ + ∞ e − t 2 2 d t \frac1{\sqrt{2\pi}}\int_{-\infty}^{+\infty}e^{-\frac{t^2}2}dt 2π 1+e2t2dt
    • 然后!神奇操作!! I 2 = ∫ − ∞ + ∞ ∫ − ∞ + ∞ e − ( t 2 + u 2 ) 2 d t d u I^2=\int_{-\infty}^{+\infty}\int_{-\infty}^{+\infty}e^{-\frac{(t^2+u^2)}2}dtdu I2=++e2(t2+u2)dtdu
    • 极坐标变换,得 I 2 = ∫ 0 2 π ∫ 0 ∞ r e − r 2 / 2 d r d θ = 2 π I^2=\int_0^{2\pi}\int_0^{\infty}re^{-r^2/2}drd\theta=2\pi I2=02π0rer2/2drdθ=2π I > 0 ⇒ I = 2 π I>0\Rightarrow I=\sqrt{2\pi} I>0I=2π
  • x = μ ± σ x=\mu\pm\sigma x=μ±σ处有拐点
  • 对于标准正态分布 N ( 0 , 1 ) N(0,1) N(0,1) φ ( x ) = 1 2 π e − x 2 / 2 \varphi(x)=\frac1{\sqrt{2\pi}}e^{-x^2/2} φ(x)=2π 1ex2/2 Φ ( x ) = 1 2 π ∫ − ∞ x e − t 2 / 2 d t \Phi(x)=\frac1{\sqrt{2\pi}}\int_{-\infty}^xe^{-t^2/2}dt Φ(x)=2π 1xet2/2dt对于分布函数,有性质: Φ ( − x ) = 1 − Φ ( x ) \Phi(-x)=1-\Phi(x) Φ(x)=1Φ(x)

引理

  • X ∼ N ( μ , σ 2 ) X\sim N(\mu,\sigma^2) XN(μ,σ2)
  • Z = X − μ σ ∼ N ( 0 , 1 ) Z=\frac{X-\mu}{\sigma}\sim N(0,1) Z=σXμN(0,1)
  • 证明:只要证明 Z = X − μ σ Z=\frac{X-\mu}{\sigma} Z=σXμ的分布函数= Φ ( x ) \Phi(x) Φ(x)
  • F ( x ) = P { X ≤ x } = P { X − μ σ ≤ x − μ σ } = Φ ( x − μ σ ) F(x)=P\{X\le x\}=P\{\frac{X-\mu}{\sigma}\le\frac{x-\mu}{\sigma}\}=\Phi(\frac{x-\mu}{\sigma}) F(x)=P{Xx}=P{σXμσxμ}=Φ(σxμ) P { x 1 < X ≤ x 2 } = Φ ( x 2 − μ σ ) − Φ ( x 1 − μ σ ) P\{x_1< X\le x_2\}=\Phi(\frac{x_2-\mu}{\sigma})-\Phi(\frac{x_1-\mu}{\sigma}) P{x1<Xx2}=Φ(σx2μ)Φ(σx1μ)
  • 3 σ 3\sigma 3σ法则:尽管正态变量 X X X的取值为 ( − ∞ , + ∞ ) (-\infty,+\infty) (,+),但 X X X落在 ( μ − 3 σ , μ + 3 σ ) (\mu-3\sigma,\mu+3\sigma) (μ3σ,μ+3σ)几乎是必然事件: P { μ − σ < X < μ + σ } = Φ ( 1 ) − Φ ( − 1 ) = 68.26 % P\{\mu-\sigma<X<\mu+\sigma\}=\Phi(1)-\Phi(-1)=68.26\% P{μσ<X<μ+σ}=Φ(1)Φ(1)=68.26% P { μ − 2 σ < X < μ + 2 σ } = 95.44 % P\{\mu-2\sigma<X<\mu+2\sigma\}=95.44\% P{μ2σ<X<μ+2σ}=95.44% P { μ − 3 σ < X < μ + 3 σ } = 99.74 % P\{\mu-3\sigma<X<\mu+3\sigma\}=99.74\% P{μ3σ<X<μ+3σ}=99.74%

例题

  • 一温度调节器中的液体温度 X ∼ N ( d , 0. 5 2 ) X\sim N(d,0.5^2) XN(d,0.52)
  • 问:(1)若 d = 9 0 o C , 求 P { X < 8 9 o C } d=90^oC,求P\{X<89^oC\} d=90oC,P{X<89oC}
  • (2)若要求 P { X ≥ 8 0 o C } ≥ 0.99 P\{X\ge 80^oC\}\ge0.99 P{X80oC}0.99,求 d d d至少为多少?

  • (1)略啦
  • (2)在这里插入图片描述
    哭了,后面这点打了三遍了,老是没有保存上o(╥﹏╥)o不想再敲公式了
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

universe_1207

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值