正态总体统计量的分布

一、单个正太总体的统计量的分布
从总体X中抽取容量为n的样本 X 1 , X 2 , . . . , X n , X_1,X_2,...,X_n, X1,X2,...,Xn,样本均值与样本方差分别是
X ˉ = 1 n ∑ i = 1 n X i , S 2 = 1 n − 1 ∑ i = 1 n ( X i − X ˉ ) 2 \bar{X}=\frac{1}{n} \sum_{i=1}^{n}X_i,S^2=\frac{1}{n-1} \sum_{i=1}^{n}\left ( X_i-\bar X\right)^2 Xˉ=n1i=1nXi,S2=n11i=1n(XiXˉ)2
定理1:设总体X服从正态分布 N ( μ , σ 2 ) N\left ( \mu ,\sigma ^2 \right ) N(μ,σ2),则样本均值 X ˉ ∼ N ( μ , σ 2 n ) \bar X\sim N\left ( \mu ,\frac{\sigma ^2}{n} \right ) XˉN(μ,nσ2)
定理2:设总体X服从正态分布 N ( μ , σ 2 ) N\left ( \mu ,\sigma ^2 \right ) N(μ,σ2),则统计量 u = X ˉ − μ σ / n u=\frac{\bar X-\mu }{\sigma /\sqrt{n} } u=σ/n Xˉμ服从标准正态分布N(0,1) ,即
u = X ˉ − μ σ / n ∼ N ( 0 , 1 ) u=\frac{\bar X-\mu }{\sigma /\sqrt{n} } \sim N\left ( 0,1 \right ) u=σ/n XˉμN(0,1)
定理3:设总体X服从正态分布 N ( μ , σ 2 ) N\left ( \mu ,\sigma ^2 \right ) N(μ,σ2),则统计量 1 σ 2 ∑ i = 1 n ( X i − μ ) 2 \frac{1}{\sigma^2}\sum_{i=1}^{n}\left ( X_i-\mu \right )^2 σ21i=1n(Xiμ)2 服从自由度为n的 χ 2 \chi^2 χ2分布,即 χ 2 = 1 σ 2 ∑ i = 1 n ( X i − μ ) 2 ∼ χ 2 ( n ) \chi^2=\frac{1}{\sigma^2}\sum_{i=1}^{n}\left ( X_i-\mu \right )^2 \sim \chi^2\left ( n \right ) χ2=σ21i=1n(Xiμ)2χ2(n)
定理4:设总体X服从正态分布 N ( μ , σ 2 ) N\left ( \mu ,\sigma ^2 \right ) N(μ,σ2),则
(1)样本均值 X ˉ \bar X Xˉ与样本方差 S 2 S^2 S2相互独立;
(2)统计量 χ 2 = ( n − 1 ) S 2 σ 2 \chi^2=\frac{\left ( n-1 \right )S^2 }{\sigma^2} χ2=σ2(n1)S2服从自由度为n-1的 χ 2 \chi^2 χ2分布,即
χ 2 = ( n − 1 ) S 2 σ 2 ∼ χ 2 ( n − 1 ) \chi^2=\frac{\left ( n-1 \right )S^2 }{\sigma^2}\sim \chi^2\left ( n-1 \right ) χ2=σ2(n1)S2χ2(n1)
定理5:设总体X服从正态分布 N ( μ , σ 2 ) N\left ( \mu ,\sigma ^2 \right ) N(μ,σ2),则统计量 t = X ˉ − μ S / n t=\frac{\bar X-\mu }{S/\sqrt{n} } t=S/n Xˉμ服从自由度为n-1的t分布,即:
t = X ˉ − μ S / n ∼ t ( n − 1 ) t=\frac{\bar X-\mu }{S/\sqrt{n} }\sim t\left ( n-1 \right ) t=S/n Xˉμt(n1)
二、两个正态总体的统计量的分布
从总体X中抽取容量为 n x n_x nx的样本 X 1 , X 2 , . . . , X n x X_1,X_2,...,X_nx X1,X2,...,Xnx,从总体Y中抽取容量为 n y n_y ny的样本 Y 1 , Y 2 , . . . , Y n y Y_1,Y_2,...,Y_ny Y1,Y2,...,Yny。假设所有的抽样都是相互独立的,由此得到的样本 X i ( i = 1 , 2 , . . . , n x ) X_i\left ( i=1,2,...,n_{x} \right ) Xi(i=1,2,...,nx) Y i ( i = 1 , 2 , . . . , n x ) Y_i\left ( i=1,2,...,n_{x} \right ) Yi(i=1,2,...,nx) 都是相互独立的随机变量。把取自两个总体的样本均值分别记作
X ˉ = 1 n x ∑ i = 1 n x X i , Y ˉ = 1 n y ∑ i = 1 n y Y i \bar X=\frac{1}{n_x}\sum_{i=1}^{n_x}X_i, \bar Y= \frac{1}{n_y}\sum_{i=1}^{n_y}Y_i Xˉ=nx1i=1nxXi,Yˉ=ny1i=1nyYi
样本方差分别记作
S x 2 = 1 n x − 1 ∑ i = 1 n x ( X − X ˉ ) 2 , S y 2 = 1 n y − 1 ∑ j = 1 n y ( Y − Y ˉ ) 2 S_x^2=\frac{1}{n_x-1}\sum_{i=1}^{n_x}\left ( X-\bar X \right )^2,S_y^2=\frac{1}{n_y-1}\sum_{j=1}^{n_y}\left ( Y-\bar Y \right )^2 Sx2=nx11i=1nx(XXˉ)2,Sy2=ny11j=1ny(YYˉ)2
定理6:设总体X服从正态分布 N ( μ x , σ x 2 ) N\left ( \mu_x ,\sigma_x ^2 \right ) N(μx,σx2),总体Y服从正态分布 N ( μ y , σ y 2 ) N\left ( \mu_y ,\sigma_y ^2 \right ) N(μy,σy2),则统计量 U = ( X ˉ − Y ˉ ) − ( μ x − μ y ) σ 2 n x + σ 2 n y U=\frac{\left ( \bar X-\bar Y \right )-\left ( \mu _x-\mu _y \right ) }{\sqrt{\frac{\sigma ^2}{n_x}+ \frac{\sigma ^2}{n_y}} } U=nxσ2+nyσ2 (XˉYˉ)(μxμy) 服从标准正态分布。
U = ( X ˉ − Y ˉ ) − ( μ x − μ y ) σ 2 n x + σ 2 n y ∼ N ( 0 , 1 ) U=\frac{\left ( \bar X-\bar Y \right )-\left ( \mu _x-\mu _y \right ) }{\sqrt{\frac{\sigma ^2}{n_x}+ \frac{\sigma ^2}{n_y}} }\sim N\left ( 0,1 \right ) U=nxσ2+nyσ2 (XˉYˉ)(μxμy)N(0,1)
定理7:设总体X服从正态分布 N ( μ x , σ x 2 ) N\left ( \mu_x ,\sigma_x ^2 \right ) N(μx,σx2),总体Y服从正态分布 N ( μ y , σ y 2 ) N\left ( \mu_y ,\sigma_y ^2 \right ) N(μy,σy2),则统计量 T = ( X ˉ − Y ˉ ) − ( μ x − μ y ) S w 1 n x + 1 n y T=\frac{\left ( \bar X-\bar Y \right )-\left ( \mu _x-\mu _y \right ) }{S_w\sqrt{\frac{1}{n_x}+ \frac{1}{n_y}} } T=Swnx1+ny1 (XˉYˉ)(μxμy)服从自由度为 n x + n y − 2 n_x+n_y-2 nx+ny2的t分布,即
T = ( X ˉ − Y ˉ ) − ( μ x − μ y ) S w 1 n x + 1 n y ∼ t ( n x + n y − 2 ) T=\frac{\left ( \bar X-\bar Y \right )-\left ( \mu _x-\mu _y \right ) }{S_w\sqrt{\frac{1}{n_x}+ \frac{1}{n_y}} }\sim t\left ( n_x+n_y-2 \right ) T=Swnx1+ny1 (XˉYˉ)(μxμy)t(nx+ny2)
其中: S w = ( n x − 1 ) S x 2 + ( n y − 1 ) S y 2 n x + n y − 2 S_w=\sqrt{\frac{\left ( n_x-1 \right )S_x^2+\left ( n_y-1 \right )S_y^2 }{n_x+n_y-2} } Sw=nx+ny2(nx1)Sx2+(ny1)Sy2
定理8:设总体X服从正态分布 N ( μ x , σ x 2 ) N\left ( \mu_x ,\sigma_x ^2 \right ) N(μx,σx2),总体Y服从正态分布 N ( μ y , σ y 2 ) N\left ( \mu_y ,\sigma_y ^2 \right ) N(μy,σy2),则统计量 F = ∑ i = 1 n x ( X i − μ x ) 2 / n x σ x 2 ∑ j = 1 n y ( Y i − μ y ) 2 / n y σ y 2 F=\frac{\sum_{i=1}^{n_x}\left ( X_i-\mu _x \right )^2/n_x\sigma _x^2 }{\sum_{j=1}^{n_y}\left ( Y_i-\mu _y \right )^2/n_y\sigma _y^2} F=j=1ny(Yiμy)2/nyσy2i=1nx(Xiμx)2/nxσx2服从自由度为 ( n x , n y ) \left ( n_x,n_y \right ) (nx,ny)的F分布。即
F = ∑ i = 1 n x ( X i − μ x ) 2 / n x σ x 2 ∑ j = 1 n y ( Y i − μ y ) 2 / n y σ y 2 ∼ F ( n x , n y ) F=\frac{\sum_{i=1}^{n_x}\left ( X_i-\mu _x \right )^2/n_x\sigma _x^2 }{\sum_{j=1}^{n_y}\left ( Y_i-\mu _y \right )^2/n_y\sigma _y^2} \sim F\left ( n_x,n_y \right ) F=j=1ny(Yiμy)2/nyσy2i=1nx(Xiμx)2/nxσx2F(nx,ny)
定理9:设总体X服从正态分布 N ( μ x , σ x 2 ) N\left ( \mu_x ,\sigma_x ^2 \right ) N(μx,σx2),总体Y服从正态分布 N ( μ y , σ y 2 ) N\left ( \mu_y ,\sigma_y ^2 \right ) N(μy,σy2),则统计量 F = S x 2 / σ x 2 S y 2 / σ y 2 F=\frac{S_x^2/\sigma _x^2}{S_y^2/\sigma _y^2} F=Sy2/σy2Sx2/σx2服从自由度为 ( n x − 1 , n y − 1 ) \left ( n_x-1,n_y-1 \right ) (nx1,ny1)的F分布,即
F = S x 2 / σ x 2 S y 2 / σ y 2 ∼ N ( n x − 1 , n y − 1 ) F=\frac{S_x^2/\sigma _x^2}{S_y^2/\sigma _y^2}\sim N\left ( n_x-1,n_y-1 \right ) F=Sy2/σy2Sx2/σx2N(nx1,ny1)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值