【人工智能】LLM 大型语言模型发展历史

本文介绍了大型语言模型(LLM)的发展历程,从基于规则的方法到神经网络模型,再到深度学习的递归神经网络和Transformer模型,如GPT系列。LLM的技术原理包括编码器和解码器、自注意力机制以及最大似然估计。未来,LLM的规模将持续扩大,效率提升,应用场景将更加广泛,同时模型的可解释性和安全性也将受到更多关注。

在这里插入图片描述

【人工智能】LLM 大型语言模型发展历史

前言

大型语言模型(Large Language Models,LLM)是指基于神经网络模型的自然语言处理技术,它可以通过大规模的训练数据和计算资源来预测自然语言文本的下一个词或句子

近年来,由于技术的不断进步和计算资源的不断增加,LLM已成为自然语言处理领域的一个热门技术。

本文将从LLM的发展历史、技术原理、应用场景和未来发展趋势等方面进行介绍。

一、发展历史

在这里插入图片描述

通过编写一系列的规则

自然语言处理技术的发展可以追溯到20世纪50年代。当时,科学家们开始研究如何让计算机能够理解人类的语言。最初的方法是基于规则的,即通过编写一系列的规则来识别和理解文本。但是,这种方法需要大量的人工工作,并且难以应对复杂的语言结构。

尝试使用神经网络模型

随着神经网络技术的发展

评论 66
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

禅与计算机程序设计艺术

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值