作者:禅与计算机程序设计艺术
《模型解释性:让模型更好地理解其决策过程》
引言
1.1. 背景介绍
随着深度学习模型的广泛应用,如何让模型更好地理解其决策过程,让人们对模型的行为做出科学的解释,已成为一个亟待解决的问题。
1.2. 文章目的
本文旨在探讨模型解释性的概念,让读者了解模型解释性的重要性,以及如何实现模型的可解释性。
1.3. 目标受众
本文主要面向有经验的程序员、软件架构师和CTO,以及对模型解释性感兴趣的技术爱好者。
技术原理及概念
2.1. 基本概念解释
解释性模型(Explainable Model)是一种能够根据输入数据和模型参数,输出相应的预测或分类结果,并且可以让人理解模型的决策过程的机器学习模型。
2.2. 技术原理介绍:算法原理,具体操作步骤,数学公式,代码实例和解释说明
解释性模型的核心思想是让人理解模型的决策过程,因此需要将模型的内部表示形式