作者:禅与计算机程序设计艺术
概述
时序数据处理(Time Series Data Analysis)是机器学习和数据科学领域的一个重要研究方向,它在许多应用场景中都有着广泛的应用。其中一个最常用的方法就是时序预测(time series forecasting),即用历史数据预测未来的发展趋势。而深度学习方法则是一种高效且普遍适用于此类问题的方法。本文将结合 LSTM (Long Short-Term Memory) 模型进行时序预测问题的实践。
时序预测的问题类型
在时序预测问题中,存在两种类型的任务,即回归(regression)和分类(classification)。回归问题就是要预测一个连续变量的值,比如股票价格等;而分类问题则是要预测某个变量取不同的值,比如股票涨跌两日之后的状态(上升还是下降)。但是由于涉及的时间跨度非常长,因此时序预测往往是一个更复杂的问题,需要考虑诸如趋势、周期性、季节性、突发事件等因素。目前比较流行的时序预测模型主要分为三种:ARIMA、RNN/LSTM 和 FBProphet。
本文将主要关注 LSTM 模型,因为它可以有效地解决时序预测问题中的长期依赖问题,而且能够捕捉到更多的特征信息。