Recommendation Based on Knowledge Graphs: 如何从海量的用户数据中有效地获取有效的信息并对之进行推荐?

本文介绍了如何基于知识图谱构建推荐系统,包括知识图谱的概念、推荐系统的基本类型和核心算法。详细阐述了基于内容的推荐算法,如热门度建模法、用户画像的协同过滤推荐,以及多任务学习的推荐算法。此外,还探讨了基于知识图谱的推荐算法,如知识图谱嵌入、路径加权推荐和双塔模型,并提供了Python实现知识图谱协同过滤推荐系统的代码示例。
摘要由CSDN通过智能技术生成

作者:禅与计算机程序设计艺术

1.简介

推荐系统(Recommendation System)是互联网领域经典的应用场景。它是指根据用户在特定信息环境中的兴趣和偏好,自动向其推荐符合其需要的内容或服务。推荐系统也被称为个性化推荐、上下文推荐、多样化推荐等。例如,Amazon的“大家都喜欢”功能就是一种基于推荐系统的推荐策略。随着移动互联网的普及和传播力度的增加,社交网络中“共同喜好的人”已经成为一种流行的推荐方式。但是,如何从海量的用户数据中有效地获取有效的信息并对之进行推荐依然是一个难题。

2.基本概念术语说明

2.1 知识图谱(Knowledge Graph)

知识图谱是指结构化的、描述世界知识的方法论,是由三元组组成的知识库,其中包括实体、关系和属性。实体是现实世界的事物或对象,关系表示两个实体之间的联系,属性则可以描述实体的某种特性或状态。知识图谱利用计算机程序技术来帮助人们快速、准确地获取和整合有用信息。

2.2 知识表示

对于知识图谱来说,实体、关系和属性三者之间具有重要的关联性,因此需要一种统一的语言描述和表示方法。目前,业界主要采用RDF、OWL、SKOS这样的三元组结构来表达知识图谱,这些都是基于三元组的语义网(Semantic

评论 7
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI天才研究院

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值