有监督学习的标签平滑方法

本文深入探讨了有监督学习中标签平滑技术的重要性和应用场景,包括加权最小二乘法、核方法和改进的标签平滑方法。通过引入正则项和核函数,这些方法能更好地处理数据的共线性问题和非线性关系,提高预测准确性。文章还提供了相关算法的代码实例和未来研究方向的讨论。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

作者:禅与计算机程序设计艺术

1.简介

在信息爆炸时代,我们通常使用机器学习进行数据分析、预测或分类任务。然而,在现实生活中,很多时候并不仅仅只存在一个目标变量,而且还有许多相关变量(称为特征)。因此,如何利用这些相关变量对目标变量进行建模是一个重要课题。
有监督学习可以分为两种类型——分类和回归。其中分类任务就是根据已知的输入样本预测其所属类别(比如垃圾邮件判定为“spam”还是“non-spam”,手写数字识别为0~9之间的某一种),而回归任务则是在给定的输入特征预测输出值(比如房价预测、销售额预测等)。
当我们需要对拥有多个相关变量的目标变量进行建模的时候,有监督学习就变得复杂起来了。但实际上,即使只有一个相关变量,也可能出现特征之间存在共线性关系的问题。举个例子,假如我们的目标变量是体重,那么身高这个变量与体重存在高度的正相关关系,也就是说,当我们提高或者降低身高的时候,会同时发生相应的体重变化。这时如果没有考虑到身高这个变量,很可能会造成估计偏差较大的情况。因此,为了解决这一问题,有人提出了“加权最小二乘法”来对目标变量进行建模,也就是对每个特征赋予不同的权重,使得共线性关系得到更好的处理。
但是,以上方法只是解决了共线性问题的一部分。对于其他一些异常点,仍

评论 16
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI天才研究院

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值