作者:禅与计算机程序设计艺术
1.简介
20篇经典蒙特卡洛方法论文将带你走进随机模拟的神秘世界。本篇文章将回顾并总结经典蒙特卡洛方法论文,介绍其基本概念、原理、应用及最新研究方向等,让你了解蒙特卡洛模拟的基础知识,并有所收获。
2.基本概念和术语
1.蒙特卡洛(Monte Carlo): 蒙特卡洛方法(Monte Carlo method),也称统计模拟方法,是利用计算机的随机化来解决复杂系统的数值计算问题的一类方法。它属于概率统计方法,其基本假设是存在一个被称作“随机样本空间”的区域,而在这一区域中取一定规模的点作为样本,然后用这些样本估计或者预测整个空间或特定区域的某种性质的分布函数。例如,对某一事件(比如抛硬币)的结果进行不断的模拟,就构成了蒙特卡洛方法的一个应用。 2.马尔可夫链(Markov chain): 马尔可夫链是一个离散的时间序列模型,描述了一个具有平稳状态分布的随机过程。马尔可夫链由一系列状态组成,每个状态下都有一个转移矩阵,其中记录了从当前状态到各个其他状态的概率。马尔可夫链可以用来建模随机过程,包括但不限于股市价格、随机游走、拍卖行竞价等。 3.转移矩阵(Transition matrix): 在马尔可夫链模型中,每个状态都对应着一个转移矩阵。转移矩阵是一个对角阵,它表示从某个状态直接进入另一个状态的概率。当每