作者:禅与计算机程序设计艺术
1.背景介绍
随着物联网技术的日渐成熟、普及,越来越多的人开始关注物联网领域。在过去的十几年里,我一直关注这一领域,并一直在进行相关研究。在这个过程中,我发现了一个现象:有越来越多的人热衷于IoT领域的研究。但却很少有人知道这个领域里隐藏着什么样的秘密,他们究竟遇到了什么样的挑战,他们又是如何解决这些问题的?
本文将探讨基于智能体(Artificial Intelligence, AI)的“机器学习”方法在IoT领域的应用。机器学习的主要目标是训练一个模型,能够模仿或者学习某个系统的行为,从而在新的输入数据出现时预测其输出结果。在智能体的学习过程中,可以自动从海量数据中提取有用的特征,并根据这些特征构造出一个判别模型。
由于智能体所掌握的数据量相对于传统计算机来说太大了,所以需要采用大规模并行计算的方式加速模型训练过程。目前,关于如何有效地实现机器学习方法在IoT领域的应用,已经有很多研究。其中最成功的方法之一就是使用神经网络模型。
2.基本概念术语说明
-
智能体(Artificial Intelligence, AI):机器学习系统由各种智能体组成,它们之间互相学习、协同工作,最终达到更高水平的智能化。智能体一般包括感知器官、决策器官、执行器官。
-
神经网络(Neural Network):是一种用于对数据进行分类、回归分析和模式识别的多层次连接的自组织网络。它由多个节点组成,每个节点都含有一个权重向量,称为连接权值。该网络接受输入数据,经过计算得到输出信号,输出信号决定于输入数据的结构和特点。

本文探讨了基于智能体的机器学习在IoT领域的应用,重点介绍了神经网络模型的构建与训练,以及模型评估与调参。通过Tensorflow框架,详细阐述了数据处理、模型定义、训练和评估的步骤,讨论了未来面临的挑战,如安全、资源消耗和模型优化问题。
订阅专栏 解锁全文
1084

被折叠的 条评论
为什么被折叠?



