作者:禅与计算机程序设计艺术
1.简介
概述
在本文中,我将阐述马尔可夫链蒙特卡罗(MCMC)方法及其与贝叶斯网络(Bayesian Network)结合的应用。马尔可夫链蒙特卡罗方法是一种近似推断的方法,通过随机采样的方法逼近真实参数的极限分布,因此被广泛用于统计、机器学习、数据挖掘等领域。在本文中,主要探讨如何通过贝叶斯网络模型对联合概率分布进行建模,并运用马尔可夫链蒙特卡罗方法求出模型参数的最大后验概率估计。
先决条件
由于对前置知识了解不够充分,本文假定读者具备以下背景知识:
- 统计学相关知识:包括联合概率分布、概率密度函数、期望、方差、矩;
- 编程基础:包括Python语言、贝叶斯网络模型实现的工具包PyMC3的使用;
- 数据处理相关知识:包括数据预处理、抽样、拟合、模型评估。
2. 基本概念术语说明
2.1 马尔可夫链蒙特卡罗方法
马尔可夫链蒙特卡罗(MCMC)方法是近似推断的方法之一,它利用从概率分布中随机采样的方式来近似样本空间的真实分布,从而得到一个有效的、无偏的近似。MCMC方法可以用于很多领域,如贝叶斯统计、模糊数学、优化等。它的基本思想是,利用马尔可夫链的结构,用连续的状态转移来表示联合概率分布,并依据该转移方程进行迭代,最终收敛到目标分布的样本。
2.1.1 马尔可夫链
马尔可夫链(