马尔可夫链蒙特卡罗方法与贝叶斯网络(Markov Chain Monte Carlo Method with

本文介绍了马尔可夫链蒙特卡罗(MCMC)方法及其在贝叶斯网络中的应用,讨论了如何通过贝叶斯网络对联合概率分布建模,并使用MCMC求解模型参数的最大后验概率估计。内容涵盖了MCMC的基本概念、贝叶斯网络的DAG模型、参数化表示法以及后验概率最大化。还涉及了模型构建、PyMC3的使用,以及未来的发展趋势与挑战。

作者:禅与计算机程序设计艺术

1.简介

概述

在本文中,我将阐述马尔可夫链蒙特卡罗(MCMC)方法及其与贝叶斯网络(Bayesian Network)结合的应用。马尔可夫链蒙特卡罗方法是一种近似推断的方法,通过随机采样的方法逼近真实参数的极限分布,因此被广泛用于统计、机器学习、数据挖掘等领域。在本文中,主要探讨如何通过贝叶斯网络模型对联合概率分布进行建模,并运用马尔可夫链蒙特卡罗方法求出模型参数的最大后验概率估计。

先决条件

由于对前置知识了解不够充分,本文假定读者具备以下背景知识:

  1. 统计学相关知识:包括联合概率分布、概率密度函数、期望、方差、矩;
  2. 编程基础:包括Python语言、贝叶斯网络模型实现的工具包PyMC3的使用;
  3. 数据处理相关知识:包括数据预处理、抽样、拟合、模型评估。

2. 基本概念术语说明

2.1 马尔可夫链蒙特卡罗方法

马尔可夫链蒙特卡罗(MCMC)方法是近似推断的方法之一,它利用从概率分布中随机采样的方式来近似样本空间的真实分布,从而得到一个有效的、无偏的近似。MCMC方法可以用于很多领域,如贝叶斯统计、模糊数学、优化等。它的基本思想是,利用马尔可夫链的结构,用连续的状态转移来表示联合概率分布,并依据该转移方程进行迭代,最终收敛到目标分布的样本。

2.1.1 马尔可夫链

马尔可夫链(

评论 20
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

禅与计算机程序设计艺术

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值