AGI的自适应能力:在线学习、迁移学习与元学习
1. 背景介绍
1.1 人工智能的发展历程
人工智能的发展经历了几个重要阶段,从早期的基于规则的专家系统,到机器学习算法的兴起,再到深度学习的突破性成就。随着数据和计算能力的不断增长,人工智能系统展现出越来越强大的能力。
1.2 通用人工智能(AGI)的崛起
然而,现有的人工智能系统大多局限于特定的任务领域,缺乏跨领域的泛化能力和自主学习能力。通用人工智能(Artificial General Intelligence, AGI)试图突破这一瓶颈,旨在创建具有人类般通用智能的智能系统。AGI系统不仅能高效学习各种任务,更重要的是能够自主获取新知识,持续自我提升。
1.3 AGI面临的关键挑战
要实现真正的AGI,必须解决机器学习系统几个关键缺陷:
- 缺乏持续在线学习能力,无法像人类一样不断吸收新知识
- 缺乏跨领域迁移学习能力,无法灵活应对新的任务领域
- 缺乏自主元学习能力,无法自主优化学习策略以提高学习效率
2. 核心概念与联系
2.1 在线学习(Online Learning)
在线学习是指智能系统在动态环境中持续地从新出现的数据流中学习,并不断调整和更新自身模型