1. 背景介绍
1.1 人工智能与决策问题
人工智能 (AI) 的目标是使机器能够像人类一样思考和行动。其中一个核心问题是如何让机器进行智能决策,即在面对不确定性时,选择最佳行动方案以实现特定目标。
1.2 概率推理与决策
概率推理是一种强大的工具,可以帮助我们处理不确定性。它允许我们对事件发生的可能性进行建模,并根据现有信息更新我们的信念。在决策问题中,我们可以使用概率推理来评估不同行动方案的潜在结果,并选择最有可能获得预期结果的方案。
1.3 贝叶斯网络与强化学习
贝叶斯网络和强化学习是两种重要的概率框架,它们为智能决策提供了互补的视角:
- 贝叶斯网络 是一种用于表示变量之间概率关系的图形模型。它可以用于推理、预测和决策,特别适用于处理复杂的因果关系。
- 强化学习 是一种通过试错学习最佳行为策略的机器学习方法。它侧重于学习如何与环境交互以最大化累积奖励。
2. 核心概念与联系
2.1 贝叶斯网络
2.1.1 定义
贝叶斯网络是一个有向无环图 (DAG),其中节点表示随机变